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Abstract: This paper derives and validates an analytical model for acoustic boundary conditions
on a can-annular gas turbine combustion system composed of discrete cans connected to an open
annulus upstream of a turbine. The analytical model takes one empirical parameter: a connection
impedance between adjacent cans. This impedance is extracted from time-marching computations
of two-can sectors of representative combustors. The computations show that reactance follows the
Rayleigh conductivity, while resistance takes a value of order 0.1 as a weak function of geometry.
With a calibrated value of acoustic resistance, the analytical model reproduces can-to-can transfer
functions predicted by full-annulus computations to within 0.03 magnitude at compact frequencies.
Varying the combustor–turbine gap length, both model and computations exhibit a minimum in
reflected energy, which drops by 63% compared to the datum gap. A parametric study yields a
design guideline for gap length at the minimum reflected energy, allowing the designer to maximise
transmission from the combustion system and reduce damping requirements.
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1. Introduction

In gas turbine combustors, thermoacoustic instability is a self-excited oscillation caused
by feedback between unsteady heat release and acoustic waves. The resulting large pressure
fluctuations are undesirable for noise and structural design considerations. In-phase
pressure and heat release perturbations act as a source of acoustic energy, which a designer
balances against acoustic losses by transmission through the turbine and damping devices.
Therefore, predicting thermoacoustic instability requires a combustor model with accurate
boundary conditions to characterise waves reflected from the turbine interface.

Industrial gas turbines use can-annular combustion systems, where transition ducts
connect discrete burners to an axial gap upstream of the turbine nozzle guide vane. Due
to rotational symmetry, historical design practice has assumed a single can to be a good
model of the entire combustion system. This simplification is convenient, as experimental
or computational costs scale with the number of cans under test, but neglects coupling
between adjacent cans by azimuthal waves.

Kaufmann et al. [1] measured a peak in the pressure fluctuation spectra of an annular
rig which was not present in a single-can test. Quarter-annulus thermoacoustic compu-
tations were sufficient to capture the extra peak, and revealed that it corresponds to a
‘push-pull’ mode where adjacent cans oscillate in antiphase. Venkatesan et al. [2] showed
experimentally that blocking the connection area in the combustor–turbine gap suppressed
a ‘push–pull’ mode in their two-can test apparatus.

Ghirardo et al. [3] performed Helmholtz simulations of a can-annular combustor and
provided experimental evidence of their predicted azimuthal mode shapes. The simulations
yielded boundary conditions suitable for thermoacoustic modelling: acoustic wave transfer
functions between all possible can pairs. They emphasise that stability is a system property
and can only be determined by a system thermoacoustic model including a ring of reacting
burners linked by a complete set of can-to-can transfer functions.
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In an iterative design process, a low-order model is useful to complement more time-
consuming experimental testing or numerical computations. von Saldern et al. [4] used
mass conservation over a compact gap and a Rayleigh conductivity for the connection
impedance between adjacent cans to develop analytical expressions for can transfer func-
tions at low reduced frequencies. Their predictions are qualitatively similar to the can
transfer functions from the simulations of Ghirardo et al. [3]. Fournier et al. [5] showed that
augmenting the Rayleigh conductivity with a characteristic length, a function of azimuthal
mode empirically fitted from two-dimensional Helmholtz simulations, matches acoustic
impedance phase results to within 2%.

Overall, the literature shows that a single-can combustor model, lacking communi-
cation between cans, is not representative of a can-annular combustor. The connection
impedance model of von Saldern et al. [4] is promising; instability frequencies in large
industrial gas turbines are typically low and in the compact regime. However, the empir-
ical connection impedance parameter has not been characterised in fully representative
configurations.

The present work first determines the sensitivity of connection impedance to geometry
by extracting values from non-linear time marching computations of two-can combustor
sectors. Then, analytical and numerical full-annulus predictions of can transfer functions
are compared. Finally, the analytical model is used to explore the can-annular combustor
design space.

This paper, an extended version of a previous conference submission [6], makes the
following contributions:

• Validation of the von Saldern et al. [4] connection impedance model in an industrially
representative can-annular combustor;

• Clarification of the importance of intra-can acoustic resistance in predicting can-to-can
transfer functions;

• A new design guideline for selection of combustor–turbine gap to minimise reflected
energy, hence easing stability issues by reducing the required damping.

2. Connection Impedance Analytical Model

The current analytical model follows the method proposed by von Saldern et al. [4]
and later extended by Orchini [7]. This section gives a derivation that includes the effect
of a general downstream impedance without other complications. In outline: the model
conserves mass over the combustor–turbine gap, an empirical connection impedance relates
intra-can velocities with pressure fluctuations in adjacent cans, and a Fourier series relates
the pressure in adjacent cans by a phase shift.

The model makes four assumptions: (i) acoustic wavelength is much larger than can or
gap cross-sections, so that the gap is compact; (ii) the combustor comprises N identical cans
each with symmetry about a constant-θ plane; (iii) there is no mean flow in the gap; (iv) the
combustor connects to a turbine with known (non-dimensional) acoustic impedance to
plane pressure waves, Zplane = p′/ρavd .

Although further analytical models are available for Zplane, in this paper, the down-
stream turbine impedance is prescribed using CFD results for plane wave forcing in an
open annulus after Brind and Pullan [8], isolating errors in the combustor model from
possible errors in a turbine analytical model.

Figure 1 shows notation required for the derivation. The real three-dimensional
combustor and turbine geometry in Figure 1a, is modelled as the network shown in
Figure 1b. Each of the combustor cans has a control volume, CVn, defined over its sector
of the combustor–turbine gap. The analytical model provides an acoustic impedance at
the leading edge of CVn to be used as a boundary condition in a separate thermoacoustic
calculation of the combustor cans.
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Figure 1. Notation for connection impedance analytical model: (a) real combustor and turbine
geometry, with control volume; (b) model geometry with quantities required for the derivation;
(c) definition of can transfer functions Tk. Note that cans may be oriented axially or radially.

In the compact regime, the acoustic pressure perturbation p′ is uniform over each con-
trol volume, and the velocity perturbations v are uniform over each of the four bounding
control surfaces. Within the assumptions of the model, can transfer functions are indepen-
dent of the detailed shape of the combustor, and two areas Acan and Agap are sufficient to
characterise the geometry. This means that the cans may be oriented axially or radially.

With quantities defined in Figure 1b, conservation of mass in control volume CVn
requires

Acan

(
vn − vd,n

)
+ Agap

(
vn−1/2 − vn+1/2

)
= 0 . (1)

To evaluate intra-can velocities, define a non-dimensional impedance of the connections
between cans,

ζ =
1
ρa

p′n − p′n+1
vn+1/2

, (2)

and substitute into Equation (1),

Acan

(
vn − vd,n

)
+

1
ζ

Agap

ρa

(
p′n−1 − 2p′n + p′n+1

)
= 0 . (3)

Invoking linearity, a general circumferential distribution of pressure fluctuations can
be expressed as a Fourier series,

p′(θ) = ∑
m

p̃′m exp(imθ) , (4)

where a tilde denotes amplitudes of the azimuthal harmonics. At fixed azimuthal mode m,
pressures in two adjacent cans spaced an angle ∆θ = 2π/N apart are related by a phase
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shift p′n+1 = p′n exp(im∆θ). Substituting the phase shift into Equation (3) and simplifying
using trigonometric identities,

ρa
(

vn

p′n
− vd,n

p′n

)
− 4

ζ

Agap

Acan
sin2 mπ

N
= 0 . (5)

Then, rearranging for the overall impedance at a given azimuthal mode,

Zm =
1
ρa

p′n
v′n

=

[
1

Zplane
+

1
Zcan,m

]−1

with Zcan,m =
Acan

Agap

ζ

4 sin2 mπ
N

. (6)

When building a thermoacoustic model, it is more convenient to work with can transfer
functions Tk, as shown in Figure 1c, instead of modal impedances Zm. The kth transfer
function is defined to reflected waves in an arbitrary can, from incident waves in another
can offset k positions away,

Tk =
p̂−n

p̂+n−k
, (7)

where a hat denotes characteristic wave amplitudes,

p̂± =
1
2

(
p′

p
± γ

u′

a

)
. (8)

Following Ghirardo et al. [3], the can transfer functions are given by the inverse
discrete Fourier transform of modal reflection coefficientsRm,

Tk =
1
N ∑

m
Rm exp(−ikm∆θ) where Rm =

p̃−m
p̃+m

=
Zm − 1
Zm + 1

. (9)

Equation (9) is justified as follows. Forcing a single can is equivalent to an impulse in the
can domain and so excites all azimuthal modes equally. The acoustic response in the modal
domain is weighted by the reflection coefficients at each harmonic. Taking the inverse
Fourier transform returns to the can domain and yields the reflected waves in each can
resulting from the original impulse.

3. Time-Marching Computational Approach

This section describes the computational fluid dynamics approach of the present work,
following methods developed by Brind and Pullan [8]. Applying forcing to non-linear
time-marching computations and analysing the resulting acoustic response allows can
transfer functions to be calculated.

3.1. Domain and Boundary Conditions

The datum combustor and turbine under consideration are representative of a large
industrial gas turbine. The combustor comprises N = 20 cylindrical cans, each identical
and symmetric about a constant-θ plane, connecting via transition ducts to an open annu-
lus upstream of the turbine. The analytical model does not describe acoustic behaviour
upstream of the can trailing edge, so a simplified can geometry omitting fuel injectors
and cooling flows is sufficient for these validation calculations. An axial gap of length
Lgap/cx = 0.9 separates combustor and turbine. Figure 2 illustrates schematically the
computational domain and boundary conditions.
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Figure 2. Domain and boundary conditions for coupled combustor and turbine CFD simulations.

The turbine design is a realistic four-stage geometry with coolant flows, leakage
flows, and three-dimensional blading. Surface patches, imposing additional fluxes of mass,
momentum, and energy, inject a total coolant flow of order 25% the turbine inlet mass flow.
Flow is subsonic, with a Mach number of Ma ≈ 0.1 in the combustor and a vane exit Mach
number of Ma ≈ 0.7. The Reynolds number, based on nozzle guide vane axial chord and
exit velocity, is of order Re ≈ 4× 106.

To capture all possible azimuthal modes, the computational model couples combustor
and nozzle guide vane in a full-annulus configuration, joined to single-passage representa-
tions of downstream blade rows using mixing planes. Alternatively, with even N, two-can
computational models provide data sufficient to extract a value for connection impedance
at reduced computational cost (ζ is independent of m).

The domain is circumferentially periodic. Inlet boundary conditions are prescribed
uniform values of stagnation pressure and temperature; the outlet boundary condition is a
prescribed static pressure, with spanwise variations assuming radial equilibrium (Figure 2).
Although spatially uniform, the inlet boundary conditions are functions of time. Because
the multi-stage turbine allows negligible upstream transmission, reflections from the outlet
boundary have no influence on the solution in the combustor. Reflections from the inlet
boundaries are accounted for and corrected in post-processing.

A circumferential interpolating plane joins the combustor and nozzle guide vane grids
at an interface within the combustor–turbine gap (Figure 2). Interpolation uncouples the
pitchwise grid densities of combustor and turbine. Mixing planes connect subsequent
rows of the turbine; this model yields a reduction in computational cost of one order of
magnitude with negligible loss of accuracy compared to an entirely full-annulus turbine.
To confirm this fact, computations with the first three turbine rows full-annulus yielded
can transfer functions within 2% of the nozzle guide vane only model.

3.2. Computational Details

Simulations were performed using TURBOSTREAM 3, a multi-block structured, com-
pressible, unsteady Reynolds-averaged Navier–Stokes solver developed by Brandvik and
Pullan [9]. The code uses a finite-volume formulation that is second-order accurate in
space and implicit dual time stepping with a second-order accurate backward differ-
ence scheme. The simulations employ an algebraic mixing-length turbulence model: a
computationally inexpensive choice that gives accurate results when calibrated against
measurements. Nevertheless, the focus of the simulations is inviscid wave propagation,
because acoustic viscous effects are confined to a thin boundary layer with thickness of
order

√
ν/π f /cx = 1.6× 10−3. The turbulence model only needs to set up a representative

mean flow, and quantitative predictions of turbine performance are not essential. A fully-
turbulent wall function yields shear stress on solid boundaries, at a distance ∆y+ ≈ 30 in
wall units. Resolution studies confirmed discretisation independence with at least 100 grid
points per acoustic wavelength and 72 time steps per acoustic period. This requires of order
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106 nodes in each combustor can and blade passage. Duplicating combustor and nozzle to
form a full-annulus sector yields a mesh with 58× 106 nodes.

In forced computations, inlet boundary conditions take the form

p0(t)
p0

= 1 + F(t) and
T0(t)

T0
=

(
p0(t)

p0

) γ−1
γ

, with F(t) =
J

∑
j=2

δ sin(2π j f0t) . (10)

In Equation (10), δ = 0.1% is a small amplitude parameter, and values of f0 and J are
selected to span a reduced frequency range range 0.02 ≤ κ ≤ 0.1, where κ = f cx/a. This
frequency range is typical of combustion instability in large industrial machines.

In full-annulus computations, to excite all azimuthal modes, an arbitrary set of can
indices n = {1, 7, 8, 14, 16} are forced, while δ = 0 in the other cans. Preliminary simula-
tions showed that calculated transfer functions were independent of the forcing pattern,
confirming that the problem is linear. In two-can computations, both cans are forced in
antiphase, exciting the m = N/2 mode only.

Unsteady computations are started from a converged steady solution and run for eight
forcing periods, then flow field data are sampled for a further eight forcing periods. One
case requires two days of wall-clock time on four Nvidia A100 graphical processing units.

3.3. Post-Processing for Can Transfer Functions

This section describes calculation of can transfer functions Tk from the CFD results to
compare with the analytical model. The solver outputs unsteady flow field data at three
cross-section sampling planes, shown in Figure 2, for each of the N combustor cans. At
each instant in time, the pressure fluctuations are area averaged over the sampling planes
to give scalar but unsteady quantities.

The least-squares multi-microphone wave separation technique of Poinsot et al. [10]
yields upstream- and downstream-running characteristic wave amplitudes in all N cans, p̂−n
and p̂+n , from pressure fluctuations on the three sampling planes in each can, given spacings
between the planes and the acoustic speed. Phase shifting waves to the centre of the
combustor–turbine gap ensures consistency with the analytical model. The segmentation
approach of Miles [11,12] accounts for area variation along the transition duct.

Forcing the (n− k)th can alone, from Equation (9) the reflected wave in the nth can is
p̂−n = p̂+n−kTk. In general, the total reflected wave is a linear superposition of contributions
from all cans. Summing over k,

p̂−n = ∑
k
Tk p̂+n−k or p̂− = T ∗ p̂+ . (11)

Equation (11) is by definition a discrete convolution, of a periodic vector of N transfer
functions T with a periodic vector of N incident waves p̂+ to make a periodic vector
of N reflected waves p̂−. By the convolution theorem, the solution of Equation (11) is
T = F−1(F (p̂−)/F (p̂+) ) , where F denotes the discrete Fourier transform operator.
The formulation of Equation (11) does not require an assumption of non-reflecting inlet
boundaries.

3.4. Extracting Connection Impedance

There are two ways to post-process connection impedance, ζ, from a CFD solution.
The direct method is to evaluate Equation (2) using area-averaged Fourier-transformed
quantities: static pressure on a plane at the can trailing edge and azimuthal acoustic velocity
on a plane spanning the gap. The indirect method employs ‘push–pull’ forcing at fixed
azimuthal mode m = N/2. Wave separation on sampling planes away from the can trailing
edge, where the acoustics are one-dimensional, yields characteristic wave amplitudes
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and a reflection coefficientRN/2 = p̃−/ p̃+|m=N/2 for this mode. ConvertingRN/2 to an
impedance ZN/2 as in Equation (9), setting m = N/2, and rearranging Equation (6),

ζ =
4Agap

Acan

[
1
ZN/2

− 1
Zplane

]−1

. (12)

The direct method involves an arbitrary averaging procedure that is not strictly consis-
tent with the assumption of one-dimensional acoustics but applies at all frequencies. The
indirect method has no area-averaging but assumes validity of the analytical model and
hence only applies at compact frequencies. This paper quotes reactances calculated using
the direct method to capture frequency trends and resistances using the indirect method
for most consistency with the analytical model.

4. Quantifying Connection Acoustic Impedances

The analytical model takes one empirical parameter: a connection impedance ζ be-
tween adjacent cans, defined in Equation (2). This section uses time-marching simulations
of two-can computational models to extract values for resistive (lossy) and reactive (in-
ertial) parts of ζ = ξ + iη and determine its sensitivity to geometry. Figure 3 shows four
geometries used for this study. The ‘Datum’ case is fully representative. The ‘Clocked’
geometry is the datum rotated by half a vane pitch to align combustor can walls with nozzle
mid-passage. The ‘Slip’ and ‘Thick’ geometries have square combustor cans of constant
cross section, with a zero-thickness inviscid wall and a wall of width 0.36 cx.

Figure 3. Four geometries of combustor can: (a) datum can and transition duct, (b) datum clocked by
half a vane pitch, (c) square with thin inviscid walls, (d) square with thick trailing edge. Not to scale.

4.1. Acoustic Reactance

Figure 4a shows acoustic reactances, η, for the four combustor geometries as a function
of reduced frequency κ = f cx/a. For Datum and Slip cases, η is proportional to frequency,
as expected for an inertial effect, and within 6% of the classical Rayleigh conductivity
ηRay = 2π f

√
Agap/a. The Clocked reactance has a slope of twice the Rayleigh conductivity.

When the combustor wall is not circumferentially aligned with vane leading edges, the
volume of fluid in motion and hence inertia is greater than an ideal thin-walled aperture
for which the Rayleigh conductivity is derived.

The Thick combustor has similar reactance to the Datum and Slip cases for κ ≤ 0.06.
At high reduced frequencies, the Thick reactance departs from a linear trend as the trailing-
edge vortex shedding locks in to the forcing frequency. The vortex shedding amplifies
acoustic motion and acts to reduce effective inertia. In real combustors, with representative
thin trailing edges w/cx < 0.1, the vortex shedding effect is negligible at typical combustion
instability frequencies κ ≤ 0.1.
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Figure 4. Connection impedance for different combustor geometries: (a) real part, acoustic reactance;
(b) imaginary part, acoustic resistance at κ = 0.017. For representative cases, reactance is within 6%
of the classical Rayleigh conductivity. Resistance increases linearly with combustor wall thickness.

4.2. Acoustic Resistance

Figure 4b shows acoustic resistances for the four cases in Figure 3, plus additional
square combustors with varying wall thickness. The resistances are calculated using the
indirect method at a reduced frequency of κ = 0.017 and plotted as a function of wall
thickness.

All resistances with wall thicknesses w/cx ≤ 0.1 fall in the range 0.1 ≤ ξ ≤ 0.15,
a variation of ±20% about the mean. The non-zero resistance of the Slip case shows
acoustic loss does not require a viscous wake behind the combustor wall, suggesting an
inviscid effect is responsible. For the family of Square combustor geometries ranging from
0 ≤ w/cx ≤ 0.36, resistance increases linearly from ξ = 0.121 to ξ = 0.267. A linear
increase in resistance is consistent with an effect that scales with connection volume. For
the same wall thickness, the Datum and Clocked geometries have smaller values of acoustic
resistance compared to the Square combustors, showing that the effect of combustor trailing
edge shape, and clocking with the turbine, cannot be neglected.

4.3. Effect of Combustor–Turbine Gap Length

The length of the combustor–turbine gap is a degree of freedom available to the
designer, selected by compromise between overall machine size and non-uniformity of the
turbine inlet flow field. If the connection impedance were a strong function of gap length,
the analytical model would require multiple calibrations to investigate the influence of gap
length on can transfer functions.

Translating the Datum combustor in the axial direction, and extracting acoustic resis-
tances for each length from two-can computations, yields the points shown in Figure 5.
Over the range 0.15 ≤ Lgap/cx ≤ 2.35 acoustic resistance varies by ±15% with respect to
the representative value Lgap/cx = 0.92. The insensitivity of acoustic resistance over this
wide range suggests that the present model can achieve good accuracy with calibration at
only a single gap length.
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Figure 5. Acoustic resistance of the Datum combustor with varied axial combustor–turbine gap.
Resistance is insensitive to gap length, varying by ±15% over the entire simulated range.

4.4. Physical Mechanism

To identify the physical mechanism for acoustic resistance requires tracking acoustic
energy on a local level. Morfey [13] defined a generalised acoustic energy flux,

N∗i =
(

p′vi
)
+

Vi
ρa2

(
p′
)2

+ ∑
j

ViVj

a2

(
p′vj

)
+ ρVj

(
vivj

)
, (13)

where p′ and vi are static pressure and velocity component fluctuations, while ρ, Vi, and
a are the mean density, velocity components, and acoustic speed. The first term in Equa-
tion (13) is the classical acoustic energy flux after Kirchoff, which is only conserved in a
stationary uniform medium; the remaining terms account for a moving medium. Time
averaging Equation (13) gives the generalised acoustic intensity, I∗i = N∗i , and the local
acoustic energy production is ∇·I∗. As Morfey [13] showed, ∇·I∗ = 0 to second order in
an irrotational, inviscid, uniform-entropy flow.

Figure 6 shows acoustic energy production, ∇·I∗, over the midspan plane of the
Datum combustor. Apart from a region downstream of the combustor wall, acoustic energy
loss is negligible. In the region of negative ∇·I∗, interaction between streamwise mean
flow and azimuthal acoustic fluctuations leads to an acoustic energy sink into vorticity
fluctuations (like grazing flow over an orifice).

Acoustic loss by streamwise mean flow interaction is a distinct mechanism from
interactions with combustor trailing edge vortex shedding. If trailing edge vortex shedding
were dominant, the region of negative acoustic energy production would be located on the
upstream side of the gap—loss by shedding is inconsistent with the contours in Figure 6.
The shedding frequency is a factor of five higher than the acoustic frequency, so there is no
interaction in this Datum geometry with a thin trailing edge.
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Figure 6. Acoustic energy production in the combustor–turbine gap at mid-span of the Datum
geometry, at reduced frequency κ = 0.017. Loss is concentrated downstream of the combustor wall.

5. Can Transfer Function Predictions

The previous section showed that, for representative can-annular combustors, the
acoustic reactance between cans is close to the Rayleigh conductivity, and the acoustic
resistance is approximately ξ = 0.12 with a weak sensitivity to geometry, varying by up to
20% over a wide variety of cases. This section compares full-annulus CFD results for can
transfer functions of the Datum geometry against predictions from the analytical model. To
calibrate the connection impedance, reactance is set to the Rayleigh value and resistance is
set to the value extracted from a two-can computation.

Figure 7 illustrates the importance of both modelling can-to-can communication and
allowing for acoustic resistance. Naïvely applying the plane-wave reflection coefficient
Rplane at the trailing edge of the combustor can, discounting transmission to other cans, is
in error by a factor of two compared to the can reflection coefficient T0. Setting ξ = 0 for a
pure Rayleigh conductivity model after von Saldern et al. [4] ignores acoustic resistance
and over-predicts |T0| by up to 68%.
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0.8
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R
efl

ec
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t CFD, Rplane
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ξ = 0.118± 20%

Figure 7. Plane and can reflection coefficient magnitudes for Datum combustor, model (lines) and
CFD (symbols). The Rayleigh conductivity model with ξ = 0 over-predicts T0 by up to 68%; using
acoustic resistance ξ = 0.118 extracted from a two-can simulation matches CFD to within 23%.

Using the resistance value ξ = 0.118 extracted from a two-can computation of this
geometry matches CFD to within 23% and is accurate to 8% at the compact reduced
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frequency κ = 0.017. The shaded band in Figure 7 shows the sensitivity of T0 predictions to
the range of variation in ξ observed across representative geometries with w/cx ≤ 0.1 in
Figure 4b. A 20% perturbation in ξ leads to a 12% variation in T0 —predicted can transfer
function magnitudes are robust to inaccuracies in acoustic resistance.

Thermoacoustic stability of a can-annular ring of combustors depends on all can
transfer functions Tk. With the calibrated value of acoustic resistance ξ = 0.118, Figure 8
shows can transfer functions for k = 0, 1, 2, 3 as a function of reduced frequency. As k
increases, transfer to more distant cans reduces, justifying a focus on small k (by symmetry
T−k = Tk).
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Figure 8. Can transfer functions for Datum combustor: (a) magnitude, (b) phase. Comparison of
analytical model (lines) to CFD simulations (symbols). With calibrated acoustic resistance ξ = 0.118,
the analytical model agrees to within 0.03 magnitude at κ = 0.017.

CFD computations and analytical model agree to within 0.03 magnitude at a low
reduced frequency κ = 0.017; see Figure 8a. The gap is assumed compact in the analytical
model, however, which results in first-order magnitude errors at high reduced frequencies
κ ≥ 0.05. Compactness is the most fundamental and strongest assumption of the model.
Accounting for non-compact effects would require a higher-fidelity two-dimensional so-
lution of the acoustic field in the combustor–turbine gap. Phase predictions in Figure 8b
agree to within 0.15 rad at κ = 0.017 and qualitatively match the trend.

Figure 9 shows the effect of combustor–turbine gap length on can transfer functions.
The assumption of compactness restricts the analysis to a low reduced frequency κ = 0.017.
The model quantitatively captures variations in the transfer functions, including a minimum
|T0| near Lgap/cx = 0.2; see Figure 9a. A constant acoustic resistance ξ = 0.118 at the
representative gap is sufficient to give good agreement across the range of gaps (the full
results in Figure 5 are not used). If full-annulus computations at one gap length are
available, fitting resistance a posteriori based on |T0| yields closer agreement, and the |T0|
minima coincide between CFD and analytical model (results not shown).

Returning to Equation (6), the total impedance is given by turbine and combustor
contributions in parallel. At a fixed frequency and azimuthal mode, there exists a value
of ζAcan/Agap where these two contributions align in destructive interference, giving a
low total impedance. Although the can transfer functions are a combination of modal
reflections (Equation (9)), the sharp phase shift of ∠T0 in Figure 9b near the inflection point
supports this explanation for the existence of the minimum.
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Figure 9. Effect of combustor–turbine gap length on can transfer functions for Datum combustor at
κ = 0.017, model (lines) and CFD (symbols): (a) magnitude, (b) phase. Using one value of acoustic
resistance ξ = 0.118 calibrated at the datum gap, the model quantitatively captures the trends. A
minimum T0 occurs near Lgap/cx ≈ 0.2.

6. Design Space Study—Minimising Reflected Energy

Both the CFD simulations and analytical model identify in Figure 9 a minimum can
reflection coefficient occurring at non-zero gap length. This section uses the analytical
model to determine the parameters affecting this minimum and the implications for coupled
combustor and turbine design.

Greatest thermoacoustic stability benefit corresponds to minimum reflected acoustic
energy, calculated as E = ∑k|Tk|2. With less reflected energy, the combustor requires less
acoustic damping to maintain stability. Summing over all cans accounts for the fact that a
minimum in just T0 may correspond to redistribution of transmission to other cans, rather
than increasing transmission through the turbine.

For the case presented in Figure 9, at the representative gap length Lgap/cx = 0.9
the reflected energy takes a value E = 0.43. Reducing the gap length until a minimum is
reached at L∗gap/cx = 0.15, the reflected energy reduces to a low of E∗ = 0.16 , a 63% drop
with respect to the representative gap.

The analytical model in Equation (6) contains four independent parameters:

E = function
(

Acan/Agap , ζ , Rplane , κ
)

. (14)

Fixing the annulus mean radius and hub-to-tip radius ratio, and varying the number of
cans, is one way to change Acan/Agap. The choice of hub-to-tip ratio is arbitrary because
both Acan and Agap are proportional to annulus height. In common with the predictions
presented so far, acoustic reactance is set to the Rayleigh value, while the acoustic resistance
is a free parameter. This design study assumes a constant reduced frequency, κ = 0.02,
in the compact regime where the analytical model is most accurate. The design study
also assumes a real downstream reflection coefficient Rplane with no phase shift, a valid
simplification in the compact regime.

Figure 10a illustrates the variation in gap length at minimum reflected energy, L∗gap,
when the remaining three non-dimensional parameters are perturbed away from a baseline
condition representative of large industrial gas turbines. L∗gap is inversely proportional
to the number of cans. Because Acan ∼ 1/N and Agap ∼ Lgap, this corresponds to the
minima occurring at a constant value of Acan/Agap ∼ 1/(NLgap), when other parameters
are fixed. Figure 10a also shows that L∗gap is directly proportional to acoustic resistance and
downstream turbine reflection coefficient.

Figure 10b plots the minimum reflected energy, E∗, as a function of the parameters in
Equation (14). The number of cans has a weak effect, with E∗ increasing by 21% as N drops



Int. J. Turbomach. Propuls. Power 2023, 8, 32 13 of 15

from the datum 20 to 7. As acoustic resistance drops towards zero, E∗ rises rapidly—the
existence of a minimum requires non-zero resistance and would not be captured by a pure
Rayleigh conductivity model. Minimum reflected energy increases as the downstream
turbine becomes more reflective, consistent with the parallel form of Equation (6).

The relationships in Figure 10a imply the optimum gap length corresponds to

ξRplane Acan/Agap = constant = 1.91± 12% , (15)

where analytical modelling over the entire design space of Figure 10 has been used to
calculate the constant, at a compact reduced frequency κ = 0.02. Raising reduced frequency
to κ = 0.05 increases the constant by 13%. Equation (15) is a design guideline that informs
selection of the combustor–turbine gap for minimum reflection and maximum acoustic loss
from the combustion system.
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Figure 10. Effect of design parameters (i) number of cans, N; (ii) acoustic resistance, ξ; and (iii)
turbine reflection coefficient, |Rplane| on (a) optimum combustor–turbine gap length, (b) minimum
reflected energy. Optimum gap length L∗gap is inversely proportional to N and proportional to ξ and
|Rplane|.

To use the guideline in practice, an engineer has several options for assigning an
acoustic resistance. With no computations available, a first guess from past experience
could be ξ ≈ 0.1. A two-can computation of a novel geometry provides a more accurate
resistance, and if necessary, reactance. Fitting to a full-annulus computation gives the most
precise value for ζ. Then, rearranging Equation (15) for Agap and dividing by annulus
height gives the optimum gap length.

7. Conclusions

This paper applied time-marching CFD and an analytical model to predict transfer
functions between incident and reflected waves in a can-annular combustor. These transfer
functions are necessary boundary conditions for a thermoacoustic model to determine
stability of the combustion system. The results show:

1. The connection impedance analytical model of von Saldern et al. [4] requires acoustic
resistance of order ξ ∼ 0.1 for can transfer functions to match CFD simulations of
a representative gas turbine combustor. The resistance arises due to streamwise
mean flow and for representative combustor wall thicknesses is a weak function of
combustor can geometry.
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2. With a calibrated acoustic resistance, the analytical model reproduces full-annulus
CFD can transfer functions to within 0.03 amplitude and 0.15 rad phase in the compact
regime, indicating validity of the modelling assumptions. Prediction errors increase
rapidly for κ ≥ 0.05 due to non-compact effects.

3. As combustor–turbine gap length is varied, for a given compact frequency, there is
a minimum reflected energy at a non-zero gap length. In the datum case, reflected
energy drops by 63% at Lgap/cx = 0.15 compared to the datum Lgap/cx = 0.9. The
minimum, where contributions from downstream turbine and other cans align in
antiphase, is captured by both CFD simulations and the analytical model.

4. Analytical exploration of the coupled can-annular combustor–turbine design space
yields a guideline for minimum reflected energy: at optimum gap length,

ξRplane Acan/Agap ≈ 1.91 .

The present analytical model is shown to be a useful tool for estimating acoustic bound-
ary conditions in a rapid, iterative combustor design process, subject to two limitations.
First, the value of acoustic resistance must be calibrated; the transfer functions, however,
are not strongly sensitive to this parameter. Second, the model assumes low reduced
frequencies, which are typical of instability in large industrial machines but cannot be
assumed in general. The mechanism of separate can and turbine impedance contributions
resulting in an optimum gap length will remain at higher frequencies.
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Nomenclature

Roman Greek
a [m s−1] Acoustic wave speed γ [–] Specific heat ratio
A [m2] Area E [–] Reflected acoustic energy
cx [m] Vane axial chord ζ [–] Connection impedance
f [Hz] Frequency η [–] Acoustic reactance
i [–] Imaginary unit θ [rad] Angular coordinate
k [–] Can offset index κ [–] Reduced frequency
Lgap [m] Combustor–turbine gap ν [m2 s−1] Kinematic viscosity
m [–] Azimuthal mode index ξ [–] Acoustic resistance
n [–] Can index ρ [kg m−3] Density
N [–] Number of cans Subscripts and accents
p [Pa] Pressure 0 Stagnation conditions
R [–] Reflection coefficient �̂ Characteristic wave
T [K] Temperature �′ Perturbation relative to mean
T [–] Transmission coefficient �± Upstream- or downstream-running
V [m s−1] Velocity �̃ Azimuthal mode
w [m] Combustor wall thickness � Time average
Z [–] Non-dim’l. impedance �∗ Minimum reflected acoustic energy
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