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Abstract

Thermoacoustic stability assessment of gas turbine combustors requires an acoustic
impedance boundary condition for the downstream turbomachinery. Actuator disk type
analytical methods offer rapid predictions of acoustic impedance in an iterative design
process; previous studies show that this class of models works well for cascades consistent
with a two-dimensional assumption. Real turbines, however, are three-dimensional with
multiple stages, coolant flows, and leakage flows. The first part of this paper validates a
cambered semi-actuator disk model for the acoustic impedance of a realistic multi-stage
turbine using non-linear time-marching computations: the two methods agree to within
9% for incident pressure waves and 14% for incident entropy waves. Simulations of the
multi-stage turbine with different inlet conditions confirm that, to a close approxima-
tion, inlet corrected flow and hence Mach numbers and acoustic impedance are constant
during off-design operation. The second part of the paper then applies both analytical
and computational approaches to families of parametrically generated turbine stages to
quantify three-dimensional design effects. The results show that the influence of hub-
to-tip ratio on acoustic impedance is weak, and the two-dimensional analytical model is
accurate even for high aspect ratio stages. Front-loaded camber lines increase axial Mach
number within blade passages, raising acoustic impedance by up to 51% compared to a
datum quadratic camber line. Varying the stator–rotor axial gap changes the relative
phase of reflections from vanes and blades, causing the total impedance to either increase
or decrease, at different frequencies, by up to 11%. The cambered semi-actuator disk
method consistently captures the correct trends, showing that the physical basis of the
model is sufficient to produce a broadly applicable tool for rapid assessment of turbine
impedance boundary conditions.
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Nomenclature

Latin
a Acoustic wave speed [m s−1]
A Aft-loading factor [–], Eqn. (14)
cx Vane axial chord [m]
f Frequency [Hz]
g Stator–rotor axial gap [m]
HTR Hub-to-tip radius ratio [–]
i Imaginary unit [–]
Ma Mach number [–]
p Pressure [Pa]
r Radial coordinate [m]
R Reflection coefficient [–]
Re Reynolds number [–]
s Entropy [J kg−1 K−1]
t Time [s]
T Temperature [K]
T Transmission coefficient [–]
U Rotor blade speed [m s−1]
V Velocity [m s−1]
x Axial coordinate [m]

Greek
α Flow yaw angle [◦]
γ Ratio of specific heats [–]
Γ Turbine inlet corrected flow [–], Eqn. (13)
κ Reduced frequency [–], Eqn. (1)
θ Circumferential coordinate [rad]
Θ Normalised inlet stagnation temperature [–], Eqn. (11)
ρ Density [kg m−3]
υ Vorticity [s−1]
Φ Normalised inlet mass flow [–], Eqn. (12)
χ Camber line angle [◦]

Subscripts and accents

�0 Stagnation state
�d Design point value
�in Turbine inlet plane
�out Turbine outlet plane
�′ Perturbation about time average

�̂ Characteristic wave
�+ Downstream-propagating
�− Upstream-propagating

Abbreviations
CFD Computational Fluid Dynamics
TAD Turbine Actuator Disk (analytical model)
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1. Introduction

In gas turbine combustors, thermoacoustic instability occurs when acoustic resonance
of the combustion chamber couples with perturbations to fuel heat release rate. If acous-
tic pressure and heat release perturbations are in phase, unsteady combustion acts as a
source of acoustic energy. If energy input exceeds losses through the boundaries of the
system, and due to damping devices, self-excited thermoacoustic oscillations will grow to
high amplitudes (Dowling [1]). In benign cases, thermoacoustic instability leads to in-
creased noise levels; in severe cases, thermoacoustic instability causes mechanical damage
and halts operation of the turbine.

Predicting thermoacoustic instability requires a model for the acoustic behaviour of
the combustor, including accurate boundary conditions at the connections to compressor
and turbine. The boundary conditions may be expressed as acoustic impedances, which
quantify the amplitude and phase of waves reflected from the boundaries (equivalently,
loss of acoustic energy through the boundaries). According to Poinsot [2], applying
correct impedance boundary conditions is a key issue when predicting the stability of real
combustion systems, as opposed to laboratory-scale rigs where the boundary conditions
are simple and well-characterised.

This paper considers impedances for both incident pressure and entropy waves, be-
cause reflections can arise from either ‘direct’ or ‘indirect’ noise (Dowling and Mahmoudi
[3], Ihme [4]). Direct noise is pressure fluctuations created by the combustion reaction.
Indirect noise is produced by the interaction of flow inhomogeneities, such as temperature
hot spots, with an accelerating mean flow through the turbine.

During a gas turbine development process, rapid assessment of acoustic impedance
with each turbine design iteration facilitates identifying and avoiding combustion system
instability at an early stage. Alternatively, Juniper and Sujith [5] argue that given the
extreme sensitivity of thermoacoustic stability to design parameters, small changes after
a full engine test are sufficient to eliminate instability. A computationally inexpensive
model for turbine impedance allows quick examination of many possible modifications.

Actuator-disk type methods are one way of predicting turbine acoustic impedance,
based on analytical solutions of the two-dimensional linearised Euler equations. First,
Marble and Candel [6] proposed the approach for quasi-one-dimensional nozzles, then
Cumpsty and Marble [7] extended the method to two dimensions. The basic actuator disk
model is valid in the low-frequency limit where blade rows become compact discontinuities
in mean flow. Applying conservation of perturbation mass flux, energy, and entropy
across a row yields a set of four simultaneous linear equations in terms of characteristic
waves, encapsulating the acoustic behaviour of each blade row.

Leyko et al. [8] and Mishra and Bodony [9] compared the Cumpsty and Marble
[7] actuator disk theory to non-linear time-marching computations of two-dimensional
turbine stators. Bauerheim et al. [10] extended the validation of Leyko et al. [8] to a
two-dimensional turbine stage. These studies found that actuator disk predictions match
computational fluid dynamics (CFD) results to within of order 10% impedance magnitude
at low reduced frequencies κ ≤ 0.05, where this paper defines reduced frequency,

κ = fcx/a . (1)

The actuator disk approach is inaccurate at higher frequencies due to non-compact effects.
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The semi-actuator disk theory, after Kaji and Okazaki [11], treats blade rows as a
cascade of flat plates with finite chord, allowing a propagation time for waves to move
axially through the row. The formulation neglects pitchwise non-compact effects, but
Kaji and Okazaki [12] found this to be an adequate approximation under conditions
typical of axial compressors.

Brind and Pullan [13] extended the semi-actuator disk theory to cambered turbine
blades, by discretising the chord into multiple flat-plate elements. Capturing axially non-
uniform flow within a cambered blade row gives a better estimate of wave propagation
time for such geometries. For a two-dimensional turbine stage, comparing the cam-
bered semi-actuator disk model with time-marching CFD gave agreement to within 16%
impedance magnitude across the entire reduced frequency range κ ≤ 0.1 representative
of thermoacoustic instability.

The cited studies show that actuator-disk type models work well in idealised cases
that are consistent with their assumptions — but, real turbines are not two-dimensional.
At low hub-to-tip radius ratios, radial equilibrium requires twisted blades to maintain
constant axial velocity. Endwall boundary layers, growing throughout multi-stage tur-
bines, and three-dimensional vane or blade geometry also cause radial non-uniformity.

The only reported comparison of actuator-disk theory with three-dimensional CFD is
that of Papadogiannis et al. [14], considering a single-stage turbine. They report results
at a single frequency κ = 0.1 for entropy wave excitation. The theory gives a good
prediction of downstream-running entropy noise, but the upstream-running entropy noise
is over-predicted by a factor of 4.6 compared to the CFD. These data are not sufficient to
confirm the general validity of two-dimensional analytical models to predict impedance
of real three-dimensional multi-stage turbines.

In practical applications, gas turbines are often operated away from their specified
design point, which may trigger thermoacoustic instability [5]. In general, the turbine
flow field will be different from nominal conditions, hence the acoustic impedance may
change. Analysis of off-design thermoacoustic instability would then require updated
turbine impedance boundary conditions.

Brind and Pullan [13] considered the effect of mean-line turbine design on acoustic
impedance, finding that flow coefficient was the most influential one-dimensional param-
eter. With three-dimensional turbines, there are extra degrees of freedom available to the
designer: geometry changes that affect the detail of the flow field while maintaining the
same mean-line aerodynamics. In particular, this paper considers such changes to hub-
to-tip radius ratio, chordwise loading distribution, and stator–rotor axial gap, illustrated
graphically in Fig. 1.

The present work uses a combination of the cambered semi-actuator disk analyt-
ical model and time-marching CFD results to quantify acoustic impedance of three-
dimensional turbines, answering the following research questions:

• What are the modelling requirements for predicting acoustic impedance of realistic
three-dimensional multi-stage turbines, and, specifically, is a two-dimensional semi-
actuator disk model sufficient?

• Does off-design operation have an effect on multi-stage turbine acoustic impedance?

• Which three-dimensional design parameter has the most influence on on turbine
stage impedance: hub-to-tip ratio, loading distribution, or stator–rotor axial gap?
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Figure 1: Three-dimensional design parameters considered in this study: hub-to-tip radius ratio, HTR;
chordwise loading distribution; stator–rotor axial gap g/cx.

2. Cambered semi-actuator disk analytical model

This section describes an analytical model for predicting turbine acoustic impedance,
an extension of the actuator and semi-actuator disk models. The model is named TAD
for short, after “Turbine Actuator Disk”. Cumpsty and Marble [7] and Bauerheim et al.
[10] give full derivations of the actuator disk approach, which assumes blade rows to be
compact and models them as discontinuities in the mean flow. Kaji and Okazaki [11]
relaxed the assumption of axial compactness in their semi-actuator disk approach, by
modelling blade rows as a cascade of flat plates. Brind and Pullan [13] introduced an
extension to cambered blades, by discretising along the chord into a series of coupled
semi-actuator disks. Figure 2 illustrates the different levels of modelling fidelity.

An acoustic model for a turbomachine must capture two processes: the propagation of
waves in open annulus, and the interaction between waves and blade rows. The remainder
of this section addresses each process in turn to assemble a system of governing equations,
and then describes a method for their solution.

2.1. Wave propagation in annular geometries

The model splits a turbine into control volumes representing the inlet, outlet, and
spaces between blade rows, Fig. 3. The mean flow in each control volume is uniform
and steady; for the present work, two-dimensional axial cuts from RANS CFD solutions,
mixed out at constant area to a uniform state, are used to prescribe the mean flow field.
Appendix A specifies the mixing process. Unsteady, non-uniform perturbations about
the mean flow obey the two-dimensional linearised Euler equations under the assumptions
of: (a) small-amplitude perturbations, (b) high hub-to-tip radius ratio, and (c) high
Reynolds number. The assumptions permit the neglect of second-order terms, spanwise
variations in mean flow, and viscous or heat conduction effects. For the industrially
relevant cases in this paper, axial Mach numbers are subsonic.

There is a classical analytical solution for wave propagation in annular geometries. At
the low frequencies representative of combustion instability, only plane waves propagate.
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Figure 2: Blade row models for determining acoustic impedance: actuator disk, after Cumpsty and
Marble [7]; semi-actuator disk, after Kaji and Okazaki [11]; cambered semi-actuator disk. From Brind
and Pullan [13].

Figure 3: Control volumes for Turbine Actuator Disk analytical model. From Brind and Pullan [13]

Seeking solutions of the form,

p′(x, t)

p
= X(x) exp (2πift) , (2)

at a fixed frequency f leads to a general solution for axial dependence X(x) comprising
four characteristic waves: upstream-running pressure, p̂−; downstream-running pressure,
p̂+; convected vorticity, υ̂; and convected entropy, ŝ [7]. (If the axial flow is supersonic,
both pressure waves are downstream-running at different speeds.)

To solve for the perturbation flow field throughout the turbine, the task is now to
determine the four characteristic wave amplitudes in each control volume resulting from
given boundary conditions. The annulus solutions must now couple to models for inter-
actions between waves and blade rows.
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2.2. Blade row modelling

After Kaji and Okazaki [11], assuming a narrow circumferential pitch implies that the
flow within blade passages is one-dimensional. This treatment accounts for axial non-
compactness, but neglects pitchwise non-compactness. For a perturbation of Eqn. (2)
form, the solution comprises two pressure and entropy characteristic waves only (vorticity
cannot exist in a one-dimensional flow).

In a blade row, mean flow quantities vary continuously from inlet to outlet conditions
as the blades turn the flow. On physical grounds, acoustic perturbations propagating
through a blade row must conserve mass, energy, and entropy. Therefore, (ρVx)′, T ′0,
and s′ or equivalently p′0 are continuous as the mean flow varies, while the amplitudes of
characteristic waves adjust to satisfy these requirements. Solving for four characteristic
waves requires another boundary condition in addition to the three conservation laws —
the Kutta condition, of no perturbation in outlet flow angle, α′ = 0, closes the system of
equations. (If the exit flow were supersonic, a choking condition would apply instead.)
The equations apply in the reference frame where a given blade row is stationary: absolute
for stators, and relative for rotors.

The model encapsulates the resulting systems of equations in transfer matrices for
each blade row, which yield the characteristic waves in the next control volume on mul-
tiplication with a vector of characteristic waves from the previous control volume. Full
derivations of the transfer matrices for flat plate and cambered blade rows are given in
Appendix B.

2.3. Entropy wave dispersion modelling

The model assumes one-dimensional flow within blade passages. In reality, there are
mean flow gradients across the pitch and span, and the transit time of a fluid particle
through the blade row varies for different locations over the row inlet. A plane entropy
wave convected with the flow will not remain plane as it propagates through the blade
row, and some of the entropy perturbation disperses to higher-order spatial modes. Leyko
et al. [8] and Giusti et al. [15] independently proposed a method to account for this
effect, which the present model includes. Tracking an array of streamlines through the
blade row using three-dimensional CFD, convecting discrete entropy waves along each
streamline, and then area-averaging at the exit of the blade row yields the remaining
planar component. This forms an attenuation coefficient applied to reduce the amplitude
of entropy waves exiting the blade row.

2.4. Solution by superposition method

With known transfer matrices for all blade rows, the model solves for the perturba-
tions resulting from given machine inlet and outlet boundary conditions using a super-
position method.

At the inlet boundary, the upstream-propagating pressure wave is unknown, as it
depends on the response of the machine to the imposed disturbance. The outlet boundary
condition is usually that there is no incident upstream-propagating wave. In this case,
the solution procedure is,

1. Make an arbitrary guess, for the amplitude of the upstream-propagating charac-
teristic wave at the inlet station;
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2. By application of the successive transfer matrices, evaluate the waves at the exit
of all subsequent blade rows and store this solution;

3. Make a second, distinct guess for the amplitude of the upstream-propagating char-
acteristic wave at the inlet station;

4. Repeat step 2. with the new guess and store the solution;

5. Neither of these solutions will satisfy the desired outlet boundary condition, of no
incident upstream-propagating pressure wave. Because the problem is linear, the
solution is the linear combination of both guessed solutions which does satisfy this
condition.

3. Time-marching computational method

Two-dimensional models are unable to capture the effects of spanwise non-uniformity
on turbine acoustic impedance. The present work uses CFD to relax the assumptions
of high hub-to-tip radius ratio and narrow blade pitch inherent in the analytical model.
The approach is an extension of the CFD method used by Brind and Pullan [13] to
three-dimensional cases.

For each geometry under consideration, a set of three unsteady simulations with
different forcing about the same mean flow provide enough data to extract impedances
to upstream- and downstream-running pressure and entropy waves. This approach, a
version of the two-port ‘black-box’ technique proposed by Cremer [16], has the advantage
of eliminating the need for non-reflecting or characteristic boundary conditions.

This section first describes the computational domain and specifies boundary condi-
tions. Next, the section covers implementation details for the flow solver, discretisation,
and calculation procedure. The section concludes with an outline of the post-processing
steps required to extract acoustic impedances from sampled flow field data.

3.1. Domain and boundary conditions

Figure 4 shows the domain and boundary conditions for the CFD model of a multi-
stage turbine on a meridional plane. The inlet boundary conditions are prescribed values
of stagnation pressure and temperature, p0,in(t) and T0,in(t). The inlet flow is axial, as
for flow exiting a gas turbine combustor. The inlet boundary conditions are functions
of time, but spatially uniform. The outlet boundary condition is a prescribed static
pressure on the inner annulus wall, pout(t), together with the assumption of simple radial
equilibrium to specify variation with radius. The boundary conditions are applied at a
separation of one machine length away from the first vane and last rotor, of order one
acoustic wavelength. The walls of the inlet and exit ducts are inviscid in order to prevent
unrealistic boundary layer growth.

The domain is circumferentially periodic. In a conventional unsteady calculation, dif-
fering blade counts in each row of a multi-stage turbine require construction of a periodic
sector with a circumferential extent covering several blade passages. Connecting adja-
cent rows with ‘sliding planes’, a circumferential interpolation procedure then matches
the flow between grids in relative motion at each time step, allowing circumferential
non-uniformity transfer through the machine.

The computational cost of multi-stage, periodic-sector calculations over multiple
acoustic periods is large, of order 15 000 GPU hours to extract impedances for the case
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Figure 4: Domain and boundary conditions for multi-stage turbine simulations.

considered here. For thermoacoustic stability, planes waves are the primary subject
of interest. This motivates a lower-fidelity model: running an unsteady calculation on
single-passage meshes connected with ‘mixing planes’, which remove the need for a pe-
riodic sector by linking rows via circumferentially uniform (but radially non-uniform)
boundary conditions.

Specifically, the current mixing plane treatment passes a pitchwise mass-averaged
entropy and stagnation enthalpy to the downstream blade row, extrapolating variation
in static pressure and flow angle from the interior; and passes the averaged fluxes of
mass, momentum and energy upstream, extrapolating their circumferential variation
from the interior while conserving mean levels. Mixing takes place separately at each
radial location, allowing spanwise non-uniformity transfer between rows. Denton [17, 18]
describes the approach in more detail. A single-passage model allows plane waves to
propagate but neglects circumferential perturbations, and reduces computational cost
by approximately one order of magnitude compared to the periodic sector model.

Section 4.2 presents results quantifying accuracy of the single passage approach, com-
pared to a periodic sector.

3.2. Implementation details

All CFD simulations in this paper use the turbostream 3 solver, a graphical pro-
cessing unit accelerated, unsteady Reynolds-averaged Navier–Stokes (URANS) code de-
veloped by Brandvik and Pullan [19]. The code employs an algebraic mixing-length
turbulence model, after Denton [18]. A wall function at a distance ∆y+ ≈ 30 in wall
units yields shear stress on solid boundaries, assuming fully turbulent boundary layers.

The acoustic boundary layer thickness is of order δacoustic ∼
√
ν/πf , where ν is the

kinematic viscosity. Relative to the turbine geometry, δacoustic/cx ∼ 1.6× 10−3, suggest-
ing that viscous effects will have a small influence on the acoustic field. The URANS
equations with wall functions are sufficient to model the mean flow and essentially inviscid
acoustic perturbations.
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The spatial discretisation is second-order accurate finite volume, with at least 300
points per acoustic wavelength and 50 points per entropic wavelength. Multi-block struc-
tured O-H type computational meshes were generated using the commercial software
Numeca AutoGrid5. The temporal discretisation is second-order accurate with an
implicit dual time stepping scheme, with 72 time steps per blade passing.

Resolution studies verified that these spatial and temporal resolutions produce results
independent of the discretisation level. At low reduced frequencies typical of combustion
instability, the length and time scales of acoustic perturbations are much larger than
those of blade rows. This means that a satisfactory resolution of the mean flow field also
guarantees sufficient resolution of the acoustic field.

The black-box approach characterises the behaviour of a linear time-invariant system
by observing responses to a set of linearly independent external inputs. In the present
application, this means a set of simulations with the same turbine operating point, but
different fluctuations about the time-averaged boundary conditions. Define a sum of
sinusoids forcing function,

F =

M∑
m=1

∆ sin (2πmf0t) , (3)

where f0 is a fundamental frequency, M is a number of harmonics, and ∆ = 0.1% is a
small amplitude parameter. Selected values of f0 and M cover the reduced frequency
range κ ≤ 0.1, representative of combustion instability. Then, denoting the time-average
using an overbar, one possible set of boundary condition perturbations is,

I. Inlet isentropic forcing,
p′0,in
p0,in

= F ,
T ′0,in

T0,in

= (1 + F )
γ−1
γ − 1 ; (4a)

II. Inlet entropic forcing,
p′0,in
p0,in

= 0 ,
T ′0,in

T0,in

= F ; (4b)

III. Outlet pressure forcing,
p′out

pout
= F . (4c)

The three unsteady simulations start from a converged steady solution and run to a
periodic state over 40 fundamental forcing periods, before sampling of the flow field over
another 12 periods.

3.3. Post-processing for reflection coefficients

This study characterises acoustic impedances in the form of reflection coefficients,
which contain the same boundary condition information but are more convenient to
work with because their magnitude is bounded by the unit interval.

During the time-marching simulations, flow field data are output for a series of stream-
wise locations in the inlet and exit ducts. A mixed-out averaging process makes the un-
steady flow spatially uniform at each instant in time, while conserving mass, momentum
and energy. Appendix A describes the averaging method in detail.

The multi-microphone method, after Poinsot et al. [20], separates upstream- and
downstream-propagating pressure waves in the inlet and exit ducts. Using the Fourier-
transformed static pressure p̌(x, f) at sampling locations x = x1, x2, . . . , xJ , the complex

10



characteristic wave amplitudes are the least-squares solution x̄ of,

Ax̄ = b , where, (5)

x̄ =

[
p̂+(f)
p̂−(f)

]
, b =


p̌(x1, f)
p̌(x2, f)
. . .

p̌(xJ , f)

 , (6)

A =


exp(ik+x1) exp(−ik−x1)
exp(ik+x2) exp(−ik−x2)

. . . . . .
exp(ik+xJ) exp(−ik−xJ)

 , k+ =
2πf

a+ Vx
, k− =

2πf

a− Vx
. (7)

The entropy wave amplitude follows directly from the Fourier-transformed entropy
perturbation š(x, f). Phase shifting the pressure and entropy waves to reference planes
at the leading edge of the first blade row, and trailing edge of the last blade row, ensures
consistency with the analytical model.

Following the black-box method to solve for acoustic impedances, choosing state
variables p̂−in and p̂+

out and expressing them as a linear sum of contributions,

p̂−in︸︷︷︸
upstream-running

wave in inlet

= p̂+
inRp̂+︸ ︷︷ ︸

reflection from turbine

+ p̂−outTp̂−︸ ︷︷ ︸
reflection from outlet,

transmitted back
through turbine

+ ŝinRŝ︸ ︷︷ ︸
upstream-running

entropy noise

, (8a)

p̂+
out︸︷︷︸

downstream-running
wave in outlet

= p̂+
inTp̂+︸ ︷︷ ︸

reflection from inlet,
transmitted back
through turbine

+ p̂−outRp̂−︸ ︷︷ ︸
reflection from turbine

+ ŝinTŝ︸ ︷︷ ︸
downstream-running

entropy noise

, (8b)

or in a more compact form,

[
p̂−in
p̂+

out

]
=

[
Rp̂+ Tp̂− Rŝ
Tp̂+ Rp̂− Tŝ

] p̂+
in

p̂−out

ŝin

 . (9)

The matrix on the right-hand side of Eqn. (9) is the ‘scattering matrix’ for the turbine,
which contains reflection coefficients for all wave types. Assembling results from the
independent simulations I, II, and III as specified in Eqns. (4) yields,

[
p̂−in,I p̂−in,II p̂−in,III
p̂+

out,I p̂+
out,II p̂+

out,III

]
=

[
Rp̂+ Tp̂− Rŝ
Tp̂+ Rp̂− Tŝ

] p̂+
in,I p̂+

in,II p̂+
in,III

p̂−out,I p̂−out,II p̂−out,III

ŝin,I ŝ+
in,II ŝ+

in,III

 . (10)

Solving the linear system in Eqn. (10) gives the scattering matrix.
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4. Multi-stage turbine test case

This section considers a realistic multi-stage turbine of four stages, with three-dimensional
blading, coolant flows, and leakage flows. Such a turbine is more complex than any of
the idealised cases investigated previously in the literature, and stretches the assump-
tions of the analytical model. After a description of the details of the case, a comparison
of acoustic impedance predictions against CFD validates the TAD model in a practical
application. Then, results from the analytical model elucidate multi-stage effects on the
acoustic impedance.

4.1. Case description

The design, illustrated in Fig. 4, is a proprietary geometry representative of large
industrial gas turbines. The hub-to-tip radius ratio is approximately HTR = 0.9 for the
first stage, reducing to HTR = 0.6 in the fourth stage. The blading is three-dimensional:
stators use compound lean to reduce endwall loading and mitigate secondary flows; rotors
twist to control the vortex distribution, and taper to reduce centrifugal loading.

The flow is subsonic, with typical relative Mach numbers Ma ≈ 0.2 at row inlet and
Ma ≈ 0.7 at row exit. The Reynolds number based on first vane exit velocity and axial
chord is of order Re ≈ 4× 106. The turbine includes cooling, hub, and shroud leakage
flows. The total flow of coolant is of order 25% inlet mass flow, the majority of which
enters within the first stage. In CFD calculations, patches with prescribed injection
fluxes of mass, momentum and energy model the integral effect of coolant flows without
resolving detailed geometry. The analytical model injects all coolant flow for each row
at the passage trailing edge.

With of order 1× 106 grid points per blade passage, a mixing-plane computational
domain requires 1× 107 nodes. Modifying blade counts by up to 15% permits construc-
tion of a periodic 18◦ sector with 4× 107 nodes in total. Despite modified blade counts,
the computational cost of a periodic sector calculation is still one order of magnitude
higher than a single-passage unsteady calculation. This is due to both an increased mesh
size and smaller time step required to resolve blade row interactions.

4.2. Acoustic impedance results

Figure 5 compares predictions for acoustic impedance of the multi-stage turbine to
an incident downstream-running pressure wave, between the TAD analytical method
and both periodic sector and single-passage CFD models. Figures 5(a) and 5(b) show
impedance magnitudes and phases.

The difference in impedance between sliding plane, periodic sector and mixing plane,
single-passage simulations is small: a maximum of 4.7% in magnitude, and 0.03 rad in
phase angle. This result implies that, when considering plane waves, a periodic sector
model is unnecessary. Running a single-passage unsteady calculation, passing circumfer-
entially averaged boundary conditions between blade rows, yields a saving in computation
time of one order of magnitude. On this basis, Sections 5 and 6 investigate the effects of
off-design operation and three-dimensional turbine design on acoustic impedance using
single-passage CFD models.

CFD and analytical predictions of acoustic impedances are in close agreement. The
root-mean-square discrepancy is 9% in magnitude, Fig. 5(a), and 0.06 rad in phase angle,
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Figure 5: Acoustic impedance of multi-stage turbine to an incident downstream-running pressure
wave, predicted by analytical model and CFD simulations: (a) magnitude, (b) phase. The CFD and
analytical approaches agree to 9% in magnitude, and 0.18 rad in phase angle on average. Computations
using mixing plane (MP) and sliding plane (SP) models agree to within 4.7% in magnitude, and 0.03 rad
in phase.

Fig. 5(b). The maximum discrepancy is 11% impedance magnitude. This level of agree-
ment is similar to that reported by Brind and Pullan [13] for a two-dimensional turbine
stage, suggesting that the model remains applicable in realistic multi-stage geometries.
The tendency of the analytical model to under-predict reflectivity is due to the assump-
tions of uniform mean flow in open annulus, and one-dimensional mean flow in blade
passages. Such a simplified treatment can only approximate wave propagation through
the true non-uniform flow.

Figure 6 compares analytical and CFD predictions for acoustic impedance of the
multi-stage turbine to an incident convecting entropy wave. This paper defines the
impedance as an entropy–acoustic transfer function between the entropy wave and resul-
tant upstream-running entropy noise, suitably normalised as Rs = (p̂−/ŝ)(cv/p). As for
incident pressure waves, periodic-sector and single-passage results are in good agreement,
confirming applicability of the simpler CFD model.

The magnitude of the acoustic impedance is well-predicted by the analytical model,
Fig. 6(a), with a root-mean-square discrepancy of 14% compared to the CFD data. The
impedance phase in Fig. 6(b) matches to within 0.2 rad for κ ≤ 0.07, but is in error by
0.5 rad at κ = 0.09.

Impedance phase shift is sensitive to the propagation time of the entropy wave as it
convects through blade passages. Errors compound as incorrect transport through one
blade row affects indirect noise contributions from subsequent blade rows. Non-compact
effects are accentuated at the low inlet Mach number of this machine, Ma = 0.14, and
high reduced frequency. Under these conditions, convection time scales are much slower
than acoustic time scales, and accurate predictions require a higher-fidelity model — for
example, the model of Emmanuelli et al. [21] convects entropy waves over streamtubes
to model radial dispersion, and then discretises in the axial direction to capture non-
compact effects.

13



0.00 0.02 0.04 0.06 0.08 0.10
Reduced Frequency, κ

0.00

0.02

0.04

0.06

0.08

0.10

Im
p

ed
an

ce
M

ag
n

it
u

d
e,
|R

ŝ
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Figure 6: Acoustic impedance of multi-stage turbine to an incident downstream-running entropy wave,
predicted by analytical model and CFD simulations: (a) magnitude, (b) phase. The CFD and analytical
approaches agree to within 14% in magnitude, and the phases agree to within 0.2 rad for κ ≤ 0.07.

4.3. Multi-stage effects

It is of interest to determine the contributions of each individual stage to the acoustic
impedance of a multi-stage turbine. Suppose that the acoustic impedance is independent
of the mean flow in the low-pressure turbine. From an analysis point of view, this permits
a simpler model omitting the rear stages of the machine. From a design point of view, a
combustion engineer can discount any influence from changes to the low-pressure turbine
on thermoacoustic stability.

Applying the TAD analytical model to successively more stages of the turbine isolates
the additional effect of each stage. From a steady CFD solution of the turbine, a series of
partial models are generated, applying the exit boundary condition at a different location
but maintaining the same mean flow in upstream stages. Figure 7 shows analytical
predictions of reflection and transmission coefficients for partial models including one to
four stages, compared to the four-stage CFD data.

From Figure 7(a), the downstream-running pressure wave reflection coefficient be-
comes independent of the number of stages once the model includes the first two stages.
The same is true for entropy–acoustic reflection in Figure 7(b). Viewed from the combus-
tor, the influence on acoustic impedance of each subsequent downstream turbine stage is
decreasing. If the mean flow in the upstream stages stays constant, then modifications
to the rear two stages will not affect impedances.

The transmission coefficient of pressure waves through the machine reduces as the
number of stages increases, Figure 7(a), because the reflection from each additional row
attenuates the transmitted wave. At κ = 0.05, the transmission coefficient of just one
stage is a factor of eight greater than that of all four stages. In contrast, transmitted
entropy noise increases with the number of stages for low frequencies, Figure 7(b). At
such a low frequency, the entropy wave is only attenuated by dispersion effects through
blade rows. The interaction with each successive stage adds more entropy noise that
propagates downstream, the amplitude at κ = 0.01 increasing by a factor of three between
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Figure 7: Effect of number of stages on acoustic impedances of multi-stage turbine predicted using
TAD analytical model: (a) incident downstream-running pressure wave, (b) incident convective entropy
wave. Reflection coefficients converge with two stages, while transmission coefficients require all four
stages.

the one-stage and four-stage models. These results emphasise that a reduced number of
stages is only sufficient to predict reflection coefficients, and prediction of transmission
and downstream noise levels requires the full model.

Figure 8 illustrates the characteristic wave solutions within each row of the turbine
obtained using TAD analytical models with two and four stages. As with Fig. 7, the
mean flow is held constant, while the non-reflective acoustic boundary condition, of no
upstream running wave, is applied at the exits of the second and fourth stage in turn.

The top row of plots, Fig 8(a), shows non-dimensional amplitudes, and the bottom
row, Fig 8(b), shows phase angles. The horizontal axis of all plots is a row index through
the machine. The four characteristic waves admitted by the linearised Euler equations
are in columns: (i) downstream-running pressure, (ii) upstream-running pressure, (iii)
convected vorticity, (iv) convected entropy. The results are for a low reduced frequency
κ = 0.02. The closed circles indicate results from the full four-stage model, and the open
circles for a model truncated after two stages.

Despite the exit boundary condition applying at different locations in the four- and
two-stage models, from Figures 8(a.i) and 8(a.ii), the solutions for pressure waves in the
front stages match to within ±5% of amplitude. There are negligible differences in the
phases, 8(b). The upstream-running wave amplitude downstream of the second stage is
p̂− = 0.39 in the full model, Figure 8(a.ii). Forcing this amplitude to zero as a boundary
condition in the two-stage model has only a small impact on the upstream solution. It
is hypothesised that internal reflections between the blade rows act to reduce sensitivity
to boundary conditions.

5. Off-design operation

This section investigates changes in turbine acoustic impedance when the gas turbine
operates away from its design point. Quantifying this effect is important because prac-
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tical experience shows that the risk of thermoacoustic instability increases at part-load
conditions [5].

There are two principle controls available to a gas turbine operator: fuel flow rate and
compressor inlet guide vane setting. To model this operating range, the inlet boundary
conditions of the multi-stage turbine from Section 4 are varied over a range of turbine
inlet temperatures and mass flow rates defined by two normalised quantities,

Θ = T01/T01,d , 0.6 ≤ Θ ≤ 1 , (11)

and,
Φ = ṁ1/ṁ1d , 0.7 ≤ Φ ≤ 1 , (12)

where subscript d indicates the design point value.
The rotor shaft speed is held constant, as it would be in power generation applications,

where the turbine drives a generator at a fixed electricity grid frequency. Coolant mass
flow scales proportionally to inlet mass flow, while coolant temperatures remain the same
at all operating points.

Single-passage unsteady CFD simulations and the TAD analytical model quantify
how acoustic impedance varies over the entire turbine operation range.

5.1. Mean flow at off-design conditions

Any changes in acoustic behaviour will be due to changes in the mean flow field. Fig-
ure 9 uses data from time-averaged CFD simulations to indicate variations in mean flow
over the operating points studied in this Section. The pressure–mass flow characteristic
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Figure 9: Effect of off-design operation on multi-stage turbine mean flow, CFD-predicted: (a) overall
pressure ratio against inlet corrected flow characteristic, normalised by design point values; (b) static
pressure downstream of each blade row, normalised by the inlet stagnation pressure, at different operating
conditions. The overall characteristic is steep, and the flow field is invariant in the front two stages.

of Fig. 9(a) is in terms of overall pressure ratio, PR, against inlet corrected flow defined,

Γ = ṁ1

√
T01/p01 . (13)

Both quantities are normalised by their design point values. The slope of the character-
istic is steep: over a 39% variation in pressure ratio the corrected flow varies by less than
1%.

The tendency for multi-stage turbines to operate at constant corrected flow is well
known [22]. As row exit Mach number increases, the pressure ratio–mass flow charac-
teristic becomes steeper, until the choking condition is reached and mass flow becomes
independent of pressure ratio. Many rows in series magnify this effect, so that the multi-
stage turbine behaves like a choked nozzle (with a constant value of corrected flow) even
when Mach numbers in each row are subsonic.

Figure 9(b) shows static pressure downstream of each blade row, normalised by the
inlet stagnation value, for the design operation condition and two off-design conditions.
These are: low mass flow rate where Φ = ṁ1/ṁ1,d = 0.6, and low inlet temperature
where Θ = T01/T01,d = 0.7. The static-to-stagnation pressure ratio across each row in
the first two stages varies negligibly, and the traces only differ in the downstream two
stages. The results of Section 4.3 show that the acoustic impedance of this multi-stage
turbine is set by the upstream two stages. Given the same pressure ratios and inlet
corrected flow in these stages, the Mach numbers and hence acoustic response of the
turbine will be the same.

5.2. Mass flow rate reduction

Figures 10 and 11 display acoustic impedance results for a reduction in mass flow of
up to 30% with 0.7 ≤ Φ ≤ 1.0, while maintaining the design turbine inlet temperature
Θ = 1. For incident downstream-running pressure waves in Fig. 10, both CFD and TAD
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Figure 10: Effect of mass flow rate on acoustic impedance of multi-stage turbine to downstream-
running pressure wave, predicted by TAD and CFD: (a) impedance magnitude, (b) impedance phase.
The acoustic impedance is independent of mass flow rate.

predict the impedance to be independent of mass flow rate. This is consistent with the
fixed corrected flow operation observed in Fig. 9(a); the mixed-out first vane exit Mach
number for each of the four cases is constant to within 0.3% and hence variations in
acoustic behaviour are negligible.

Now considering incident entropy waves in Fig. 11, the analytical model also predicts
entropy–acoustic transfer functions to be independent of mass flow rate, while there is
a spread in the CFD data of order 0.01 in magnitude and up to 0.5 rad in phase angle.
There is no physical reason for the CFD data to show dependence on mass flow rate:
when operating at fixed corrected flow, the non-dimensional acoustic field is always the
same, as confirmed by the TAD results. The spread in CFD results is due to numerical
effects, where discretisation and post-processing errors depend on the dimensional flow
field, especially at higher frequencies.

5.3. Turbine inlet temperature reduction

Figure 12 shows the effect of turbine inlet temperature reduction by up to 30% with
0.7 ≤ Θ ≤ 1.0 at constant mass flow Φ = 1, on the acoustic impedance to pressure waves.
The dimensional value of the fundamental frequency is held constant, so that reduced
frequencies for each CFD forcing harmonic increase with

√
Θ.

Figure 12(a) displays small variations of up to 7% in impedance magnitude as the
inlet temperature drops, reducing by of order 0.01 rad at Θ = 0.7. The effect is not
a numerical artifact, as it occurs in both TAD and CFD models. Although the inlet
corrected flow remains constant, the dimensional coolant temperature is fixed for this
study, so the temperature ratios for coolant injection will change, altering impedances.
If coolant temperatures were appropriately scaled with the turbine entry temperature,
results for different Θ would collapse, as with those for mass flow rate Φ in Fig. 10. The
impedance phase in Fig. 12(b) is a weak function of turbine inlet temperature.

The analytical results in Fig. 13(a) show a consistent trend for reduction in the
entropy–acoustic transfer function magnitude as turbine inlet temperature reduces, by
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Figure 11: Effect of mass flow rate on acoustic impedance of multi-stage turbine to convecting entropy
wave, predicted by TAD and CFD: (a) impedance magnitude, (b) impedance phase. The analytical
model predicts the entropy–acoustic transfer function to be independent of mass flow rate, while the
CFD results exhibit a spread at high frequencies attributable to numerical and post-processing artifacts.

up to 10%. This is because a rising coolant temperature ratio acts to reduce the first
vane exit Mach number by up to 2% when Φ = 0.7.

CFD results in Fig. 13 show a greater variation in impedance than the analytical
model, of order 0.01, but without a consistent trend. As with Fig. 11, numerical effects are
responsible. In particular, for the cases considered in this section, the mesh resolution and
sampling probe locations are fixed, but the acoustic wavelength varies with turbine entry
temperature. Hence, uncertainties in the CFD simulated and post-processed transfer
functions are larger than the trend predicted by TAD. For other cases presented in this
paper, the probe locations and forcing amplitude are optimised for fixed dimensional
inlet boundary conditions, and uncertainties are at a minimum.

Overall, the results from this section confirm that the acoustic impedance of a multi-
stage turbine may be assumed constant during off-design operation.
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Figure 12: Effect of turbine inlet temperature on acoustic impedance of multi-stage turbine
to downstream-running pressure wave, predicted by TAD and CFD: (a) impedance magnitude,
(b) impedance phase. Impedance varies by up to 7% at low turbine inlet temperatures, due to an
increase in coolant temperature ratio.
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Figure 13: Effect of turbine inlet temperature on acoustic impedance of multi-stage turbine to convect-
ing entropy wave, predicted by analytical model and CFD: (a) impedance magnitude, (b) impedance
phase. TAD predicts a weak sensitivity, while CFD results show variations of order 0.01 in entropy–
acoustic transfer function.
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Figure 14: Flowchart for turbine stage geometry generation procedure.

6. Three-dimensional turbine design

This section quantifies the effect of geometry changes on the acoustic impedance of
three-dimensional turbine stages. Brind and Pullan [13] investigated the influence of
mean-line aerodynamic design on acoustic impedance, changing one-dimensional param-
eters such as flow coefficient and stage loading coefficient. The present work considers
more detailed design changes to a three-dimensional turbine stage, while maintaining a
constant one-dimensional operating point.

A parametric geometry generation system yields families of similar turbine stage
designs, independently varying: hub-to-tip radius ratio, chordwise loading distribution,
and stator–rotor axial gap; while holding annulus-averaged flow at the same values in all
cases. Single-passage unsteady CFD simulations and the analytical TAD model predict
the resultant effects on acoustic impedance.

6.1. Geometry generation algorithm

To create sets of comparable turbine geometries requires a consistent design method
proceeding from first principles. The method uses standard turbomachinery aerodynam-
ics parameters as defined by Dixon and Hall [23]. Figure 14 illustrates the input data
required at each step in the process, described below:

• Input the mean-line velocity triangle design parameters: flow coefficient, stage
loading coefficient, degree of reaction, vane exit Mach number, estimated polytropic
efficiency, axial velocity ratio, and ratio of specific heats;

• Use the Euler work equation and perfect gas compressible flow relations to convert
these aerodynamic non-dimensional groups into a set of geometric non-dimensional
parameters characterising the mean-line: flow angles, axial velocity density ratios,
and a normalised blade speed U/

√
cpT01;
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• Choose an arbitrary inlet enthalpy, cpT01, and shaft angular velocity, Ω, to calculate
a mean radius from the normalised blade speed;

• Input a value of hub-to-tip radius ratio, HTR = rhub/rtip, and set the radial spans
using the calculated mean radius and axial velocity density ratios;

• Input a vane exit Reynolds number, Re2, to fix the chord length, assuming the
stator and rotor chords are equal;

• Input the stator–rotor gap, g/cx, and the annulus line of the stage is fully defined;

• Input a Zweifel loading coefficient, Z, to set blade pitches;

• Specify flow angles away from mid-span using a free-vortex swirl distribution, with
constant rVθ;

• Input an aft-loading factor, A, and evaluate a cubic camber line where the metal
angle χ is a function of axial chord fraction x/cx,

tanχ
(
x
cx

)
= (tanχ2 − tanχ1)

[
A
(
x
cx

)2

+ (1−A) xcx

]
+ tanχ1 , 0 ≤ x

cx
≤ 1 ;

(14)

• Apply a simple algebraic thickness distribution from Denton [17] symmetrically
about the camber line to create vane and blade sections at each radial location;

• Stack the sections radially on their centroids;

• Taper the rotor in axial and circumferential directions to a representative area ratio
of 1/2;

• Output annulus line and blade section coordinates for meshing.

Table 1 lists mean-line and three-dimensional design parameters for the turbine stages
presented in this section. Although the resulting designs are not optimal, and would
benefit from manual changes to the blade sections and radial vortex distributions, their
performance is adequate, with a CFD-predicted polytropic efficiency within one percent-
age point of the target value η = 0.95. More importantly, the designs are comparable to
each other, and vary only one parameter at a time. Figure 15 shows the blade shapes and
well-behaved flow pattern at mid-span in the datum turbine stage using CFD predictions
of relative Mach number.

6.2. Hub-to-tip radius ratio

The analytical model assumes high hub-to-tip radius ratio, to make the governing
equations two-dimensional; only CFD can capture the effect of spanwise non-uniformity
on acoustic impedance. Section 4.2 shows that the analytical model nevertheless yields
an adequate prediction for a three-dimensional turbine with a hub-to-tip radius ratio of
HTR = 0.9 in the first stage.

This section will further show that the TAD analytical model is accurate down to low
hub-to-tip radius ratios, using a set of turbine stages with 0.6 ≤ HTR ≤ 0.9 generated
using the procedure of Section 6.1. As radial span increases, mass flow rate also increases,
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Table 1: Input data for turbine geometry generation, with datum values.

Mean-line
parameters

Inlet flow angle, α1 = 0◦

Flow coefficient, φ = 0.6

Stage loading coefficient, ψ = 1.6

Degree of reaction, Λ = 0.5

Constant axial velocity

Vane exit Mach number, Ma2 = 0.75

Vane exit Reynolds number, Re2 = 4× 106

Ratio of specific heats, γ = 1.33

Estimated polytropic efficiency, η = 0.95

Zweifel coefficient, Z = 0.85

Three-
dimensional
parameters

Hub-to-tip radius ratio, HTR = 0.9

Aft-loading factor, A = 0.0

Stator–rotor axial gap, g/cx = 1.0

Figure 15: Contours of relative Mach number at mid-span for the datum generated turbine geometry,
predicted by CFD. The flow field is subsonic and well-behaved.
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Figure 16: Vane exit flow fields, predicted by CFD, for turbine stage designs at varying hub-to-tip
radius ratio: (a) Contours of stagnation pressure loss coefficient, referenced to isentropic exit dynamic
head, (b) contours of yaw angle. The flow is three-dimensional, with spanwise non-uniformity.

while the annulus-averaged flow coefficient, stage loading coefficient, degree of reaction,
and vane exit Mach number remain constant to within±0.9%. If spanwise non-uniformity
has no influence, these geometries would all have similar acoustic impedances, with any
differences due to small changes in one-dimensional flow parameters.

Figure 16 illustrates vane exit flow fields in the family of turbine stages with different
hub-to-tip ratios. Contours of stagnation pressure loss coefficient in Fig. 16(a) show
secondary loss cores and boundary layers at the endwalls, with lower loss at mid-span.
Fig. 16(b) shows that swirl reduces towards the casing, as expected from a free-vortex
distribution. This is necessary to satisfy radial equilibrium while maintaining a constant
axial velocity.

Figure 17 shows results for the acoustic impedance of this family of turbine stages
to a downstream-running pressure wave, comparing between TAD and CFD. Despite
radial variations in flow angle of up to 25◦ (Fig. 16(b)), violating the two-dimensional
assumption of the analytical model, Fig. 17(a) shows good agreement between TAD and
CFD for all hub-to-tip ratios, with a root-mean-square discrepancy of 5% in impedance
magnitude over all cases. At κ = 0.09, CFD predicts a drop in impedance of 13%
as the hub-to-tip ratio reduces from HTR = 0.9 to HTR = 0.6, and the analytical
model a drop of 11%. Because both methods capture this effect, the cause must be the
small changes in one-dimensional mean flow between designs. The acoustic impedance
phase, in Fig. 17(b), is insensitive to hub-to-tip ratio according to both model and CFD
predictions.

Considering the entropy–acoustic transfer function in Fig. 18, the results are similar to
those observed for incident pressure waves. At constant mean-line design, the influence
of hub-to-tip ratio and associated radial non-uniformity is weak. Notwithstanding a
systematic over-prediction by TAD of 30% in magnitude at κ = 0.07, both CFD and
analytical model agree that the entropy–acoustic transfer function varies by less than
±10% as hub-to-tip ratio is varied.
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Figure 17: Effect of hub-to-tip ratio on acoustic impedance of a turbine stage to downstream-running
pressure wave, predicted by TAD analytical model and CFD: (a) impedance magnitude (b) impedance
phase. As hub-to-tip ratio reduces, impedance magnitude reduces by up to 15%, a trend captured by
both analytical model and CFD. Impedance phase is insensitive to hub-to-tip ratio.
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Figure 18: Effect of hub-to-tip ratio on acoustic impedance of a turbine stage to convecting entropy
wave, predicted by TAD analytical model and CFD: (a) impedance magnitude (b) impedance phase.
Both magnitude and phase of the entropy–acoustic transfer function are independent of hub-to-tip-ratio.
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Figure 19: Radial variations in acoustic impedance of streamtubes through a turbine stage at κ = 0.05,
predicted by analytical model. At HTR = 0.9, the impedance of all streamtubes varies by ±9%; at
HTR = 0.6, the hub streamtube impedance is 55% over the mean value, while the impedance reduces
towards the casing where the streamtubes choke for r̂ > 0.75. The annulus-averaged impedances in the
two cases differ by 3%.

Splitting the annulus into axisymmetric streamtubes allows examination of the local
impedance at each spanwise location. The mean flow at inlet and exit planes of the stage
is separated radially into bands each comprising 10% of the total mass flow, and input
to the analytical model. Figure 19 compares the predicted acoustic impedances of each
streamtube with the impedance for the entire annulus.

At high hub-to-tip ratio, HTR = 0.9, the acoustic impedance of each streamtube
is within ±9% of the annulus-averaged value, with impedance trending down as radius
increases. Although the flow is three-dimensional, the effect of this degree of radial
non-uniformity on acoustic impedance is weak.

At low hub-to-tip radius ratio, HTR = 0.6, the degree of radial non-uniformity is
greater, accentuating the trend of reducing impedance with radius. The local acoustic
impedance is 55% over the annulus-average at the hub, because flow turning through
the rotor is greatest at this location. Rotor turning decreases for streamtubes at higher
radii, presenting less of a blockage for incident acoustic waves. Near the tip, the rotor
exit relative Mach number exceeds unity, and the analytical model is not applicable.

Figure 19 shows why the two-dimensional analytical model gives accurate predictions
of acoustic impedance, even for low hub-to-tip radius ratios where three-dimensional
effects might be anticipated. Radial non-uniformity does have a first-order influence on
the local acoustic impedance. However, variations in impedance due to variations in mean
flow are approximately linear, such that increased impedance at the hub and reduced
impedance at the tip balance out. The acoustic impedance of the annulus, averaged over
all streamtubes, is close to the acoustic impedance given by a radially averaged flow.
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Figure 20: Variation in camber line for a turbine vane using aft-loading factor A: (a) section geometry,
(b) streamwise distribution of area-averaged axial Mach number. High values of A yield curved camber
lines, with turning delayed towards the rear of the passage; low values of A approach flat plate geometry.
As A increases, axial Mach number rises within the passage, while remaining constant outside.

6.3. Camber

The shape of an aerofoil camber line controls the chordwise loading distribution, that
is, the fraction of total turning performed up to a given point in the blade passage.
A ‘front-loaded’ blade row does most turning around the leading edge, while an ‘aft-
loaded’ blade row delays turning until the flow is well inside the passage. With fixed
inlet and exit flow angles, a designer has freedom to vary the camber line to minimise
attached boundary layer [24] and secondary flow [25] losses. This section will show that
front-loading also increases the row acoustic impedance at non-compact frequencies.

Modifying the aft-loading factor −1 ≤ A ≤ 0.8 in the definition of the camber line,
Eqn. (14), generates a family of turbine stage designs with the same mean-line operat-
ing point, but different chordwise loading distributions. Aft-loaded blades have A > 0;
front-loaded blades have A < 0. Recambering applies to both the stator and rotor
with the same value of A. To correct for changes in deviation due to modified aero-
foil shape requires an additional iterative step to the geometry generation described in
Section 6.1: restaggering the stator and rotor (through a solid-body rotation) until the
annulus-averaged flow angles match those of the datum A = 0 case. The mean-line flow
parameters of the final designs match to within ±1%.

Figure 20 shows the effect of varying aft-loading factor on aerofoil geometry, in
Fig. 20(a), and on chordwise distribution of passage-averaged Mach number in Fig. 20(b).
At low values of A, the vane section approaches a flat shape with a straight camber line,
while high values of A produce more curvature. Performing turning earlier accelerates
the flow, so that the axial Mach number throughout the passage increases monotonically
throughout the passage as A reduces, while Mach numbers outside the passage remain
constant.

In the compact limit, a turbine becomes a discontinuity in mean flow with respect to
a much larger acoustic wavelength, and acoustic impedance is independent of geometry.
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Therefore, variations in the camber line can only affect impedance at non-compact fre-
quencies. CFD results for impedances subject to incident downstream-running pressure
waves in Figure 21(a) confirm this reasoning. For κ ≤ 0.03, the impedance magnitude
varies by less than ±2% when changing the aft-loading factor over −1 ≤ A ≤ 0.8. At
higher frequencies, however, aft-loading reduces impedance magnitude by up to 16%
compared to the datum quadratic camber line, and front-loading increases impedance
magnitude by up to 51%. Aft-loading also reduces the impedance phase, Fig. 21(b), by
a maximum of 0.23 rad at κ = 0.07.

Figure 22 illustrates the influence of aft-loading on entropy–acoustic transfer functions
for the family of recambered turbine stages. From CFD results in Fig. 22(a), there is
no effect at low reduced frequencies, while the impedance magnitude increase for front-
loaded blades for κ ≥ 0.04. The maximum entropy acoustic transfer function occurs for
A = −1 at κ = 0.05, 43% over the datum quadratic camber line. Aft-loading with A < 0
reduces the impedance by no more than 5%. The impedance phase results in Fig. 22(b)
display a reduction as the aft-loading factor A increases, of order 0.15 rad for frequencies
κ ≥ 0.03.

The TAD model accommodates changes in camber line by altering the chordwise dis-
tribution of flow angle for each of the coupled semi-actuator disks according to Eqn. (14).
Usually, the analytical method produces correct trends in impedance magnitude and
phase, but under-predicts the size of the aft-loading effect in Fig. 21(a), and incorrectly
predicts an increase in impedance for aft-loaded turbines at high reduced frequency in
Fig. 22(a). With front- or aft-biased chordwise loading distributions, the maximum local
loading is higher and pitchwise flow field variations are greater. However, the model as-
sumes one-dimensional flow in blade passages, and any deviations from this simplification
contribute to increased errors.

A front-loaded blade accelerates the flow further upstream than an aft-loaded blade,
meaning that Mach numbers are higher throughout a front-loaded blade passage. The
increase of acoustic impedance for front-loaded blades is then consistent with the known
result that higher vane exit Mach number leads to higher impedance [11, 13].

The physical mechanism responsible is interference between waves reflected from dif-
ferent parts of the camber line. Gradients in mean flow along the chord contribute
continuously to the total reflected wave. The discrete analog of this situation in the
TAD model is a sum of waves reflected from both leading and trailing edges, and be-
tween each intermediate camber line element. In the compact limit, the phase delay for
waves propagating over the blade chord is negligible, and independent of the flow within
the passage. At higher reduced frequencies, the phase delay is a function of the chordwise
axial Mach number distribution. For the turbine considered here, front-loading changes
the phase delay such that interference is more constructive, and acoustic impedance
increases compared to the datum.

Additional calculations using the TAD model confirm that the qualitative trend of
increased impedance with front-loaded camber lines replicates across the entire mean-
line design space considered by Brind and Pullan [13]. That is, the interference effect
described above is not a strong function of the specific turbine velocity triangles.
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Figure 21: Effect of chordwise loading distribution on acoustic impedance of a turbine stage to
downstream-running pressure wave, predicted by analytical model and CFD: (a) impedance magni-
tude , (b) impedance phase. Compared to the datum quadratic camber line, at κ = 0.09, aft-loading
reduces impedance by 16%, and front-loading increases impedance by 51%.
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Figure 22: Effect of chordwise loading distribution on acoustic impedance of a turbine stage to convect-
ing entropy wave, predicted by analytical model and CFD: (a) impedance magnitude , (b) impedance
phase. Compared to a datum quadratic camber line, front-loading increases impedance by up to 43%.

29



6.4. Stator–rotor gap

A mean-line analysis cannot determine the optimum axial spacing between stator
and rotor rows. The designer will trade off increased endwall loss and overall length
at large gaps, with increased unsteady fatigue loading at small gaps. In addition, this
section shows that acoustic impedance is a function of axial spacing, even at low reduced
frequencies close to the compact limit of order κ ≈ 0.02.

The annulus lines of the present turbine stages diverge within blade rows, and are
parallel outside of blade rows (neglecting fillets to smooth sharp corners). Therefore,
simply translating the rotor row in the axial direction generates stages with different
stator–rotor gaps in the range 0.5 ≤ g/cx ≤ 1.5 . Figure 23 shows meridional views of
this set of turbines. The mean-line flow parameters are constant to within ±0.3%.

Figure 23: Annulus lines of turbine stages with varying stator–rotor axial gaps g/cx.

Figure 24 shows acoustic impedance results for a downstream-running pressure wave
incident on turbine stages with different stator–rotor axial gaps. All impedances converge
to the same value of

∣∣Rp̂+ ∣∣ = 0.81 in the compact limit as κ → 0, Fig. 24(a), but
impedance reduces as axial gap increases for reduced frequencies 0.02 ≤ κ ≤ 0.06. CFD
predicts a drop in impedance of 11% at κ = 0.035 as g/cx increases from 0.5 to 1.5.
The analytical model quantitatively matches this trend, predicting a corresponding drop
of 12%. There is a crossover region, where the impedance magnitude is insensitive to
axial spacing, around 0.055 ≤ κ ≤ 0.07, above which the trend reverses and reflection
coefficient increases with axial spacing. Impedance phase results in Fig. 24(b) exhibit
sensitivity to axial gap in the same region where the impedance magnitude is insensitive.
Increasing gap increases the impedance phase by of order 0.04 rad.

Figure 25 shows impedance results for a convecting entropy wave incident on the
turbine stages with varying axial gaps. The effect of axial gap on impedance magnitude,
Fig. 25(a), varies depending on the frequency under consideration: a negative trend at low
and high frequency, and a positive trend between two cross-over points 0.035 ≤ κ ≤ 0.08.
The maximum increase in entropy impedance is a factor of two at κ ≤ 0.05. Impedance
phase, Fig. 25(b), is most sensitive around the cross-over points, and least sensitive at
κ = 0.05 where the magnitude effect is largest. The behaviour in Fig. 25 is qualitatively
consistent with Fig. 24.
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Figure 24: Effect of stator–rotor axial gap size on acoustic impedance of a turbine stage to
downstream-running pressure wave, predicted by analytical model and CFD: (a) impedance magni-
tude, (b) impedance phase. The impedance magnitude reduces by up to 11% with increasing axial gap
for 0.01 ≤ κ ≤ 0.06.

As the problem is linear, the response of a turbine stage to an incident downstream-
running pressure wave decomposes into a superposition of two stator-only cases, illus-
trated in Fig. 26. These are: (i) the incident downstream-running pressure wave, and
(ii) an incident upstream-running pressure wave originating from reflection at the rotor.
Case (ii) is the subtraction of case (i) from the full stage solution. Figure 26 also shows
the inlet upstream-running wave present in each case, together with the total impedance,
as phasors. The plot shows results for all axial gaps at two reduced frequencies, κ = 0.03
and κ = 0.06.

The stator contribution makes up most of the total impedance, and is independent
of axial gap (Fig. 26, the lone pink symbols). The rotor contribution, however, is a
function of axial gap, because it depends on the phase shift of waves crossing the gap
(Fig. 26, teal symbols with lines attached). At κ = 0.03, the relative phase of rotor
and stator contributions is such that the magnitude of the complex sum reduces as gap
increases (Fig. 26, radial line inwards from grey cross). At κ = 0.06 the variation in rotor
contribution lies perpendicular to the stator contribution phasor, such that the complex
sum only varies in phase (Fig. 26, circumferential line from grey circle).

The trends in Figs. 24 and 25 are projections of the two-dimensional complex sum
onto magnitude and phase coordinates. For example, this explains why the maximum
sensitivity of impedance phase occurs at the frequency where impedance magnitude is
insensitive. The implication is that the effect of axial gap will be a strong function of
frequency in any given case, and no universal conclusion may be drawn. However, the
TAD model is a useful tool to analyse this effect in the general case.
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Figure 25: Effect of stator–rotor axial gap size on acoustic impedance of a turbine stage to convecting
entropy wave, predicted by analytical model and CFD: (a) impedance magnitude, (b) impedance phase.
The entropy-acoustic transfer function at κ = 0.05 doubles as gap increases by a factor of three.

0.2
0.4

0.6

Rotor

Stator

Full

0

π/2

π

3π/2

R phasors

Figure 26: Effect of axial gap on stator and rotor contributions to turbine acoustic impedance, predicted
by TAD model. At κ = 0.03 the relative phase of the contributions gives reduced impedance as gap
increases. At κ = 0.06, the rotor contribution is phase-shifted and axial gap only alters impedance phase.
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7. Physical mechanisms neglected by the analytical model

The literature has reported some physical mechanisms that are not included in the
TAD analytical model. Various studies have demonstrated effects on acoustic impedance
using their own analytical modelling or experimental measurements. This section consid-
ers the implications of those results for the present turbomachinery modelling approach.
Non-planar entropy waves, non-isentropicity, vorticity noise and compositional noise will
be discussed.

7.1. Non-planar entropy waves

The present method uses an empirical attenuation coefficient, calculated by convect-
ing entropy waves along streamlines from three-dimensional CFD results, to approximate
entropy wave dispersion within blade rows (Section 2.3). A limitation of this approach
is that incident entropy waves are assumed planar upstream of each row.

In reality, entropy fluctuations are non-uniform over the turbine inlet. From large-
eddy simulations of a combustion chamber, Livebardon et al. [26] found that the planar
mode accounted for no more than 40% of the entropy fluctuation energy. Pinelli et al.
[27] predicted a variation in upstream entropy noise power of up to 5.2dB when clocking
unsteady hot spots with respect to the turbine.

Suppose the distribution of entropy fluctuations over the turbine inlet is known for
a given combustor geometry. Assigning a different amplitude and phase to entropy
waves on each streamline, dependent on the start location, will sensitise the attenuation
coefficient to a distribution of non-planar entropy waves. This modification to the model
is, however, unvalidated. Because entropy wave dispersion effects are specific to the
detailed combustor and turbine flow field, a pragmatic approach would be to use higher-
fidelity modelling later in the design cycle.

7.2. Non-isentropicity

De Domenico et al. [28] present entropy noise measurements for nozzles, and a non-
isentropic analytical model that reproduces their experimental results. They use a non-
isentropicty parameter, β, to characterise entropy rise or equivalently pressure loss. Max-
imum loss corresponds to an orifice plate, where β < 1 is equal to the orifice area ratio.
β = 1 corresponds to isentropic flow. The convergent–divergent nozzle in their study is
highly lossy, with β ≤ 0.032.

In contrast, turbine blades are essentially convergent passages with lower levels of
loss: for the first vane of the multi-stage turbine in this paper β = 0.907. The present
model only captures non-isentropicity in the mean flow, conserving entropy in acoustic
perturbations, but yields adequate agreement with CFD simulations. This suggests that
non-isentropicity in the acoustic field may be neglected for representative high-efficiency
turbine stages. Indeed, the non-isentropic model of De Domenico et al. [28] treats flow
in the contracting part of the nozzle as isentropic.

7.3. Vorticity noise

Flames are commonly swirl-stabilised in gas turbine combustors, leading to the pos-
sibility of unsteady perturbations in vorticity convecting through the turbine and gener-
ating acoustic waves. Few publications are available on this indirect noise mechanism.
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Generating axial vorticity by injecting an unsteady tangential mass flow upstream
of a nozzle, Kings and Bake [29] measured an acoustic response that they identified as
vorticity noise. However, Hirschberg et al. [30] attributed the sound generation to change
in nozzle mass flow rate during injection.

Analytical studies by Duran et al. [31] and Dowling and Mahmoudi [3] show that
the contribution of radial vorticity perturbations to indirect noise is at least one order
of magnitude lower than entropic perturbations. There are no estimates available of the
relative magnitudes of axial vorticity and entropy noise transfer functions.

Axial vorticity perturbations do not admit a simple analytical model, being inherently
three-dimensional. Furthermore, the spatial distribution of vorticity on the inlet plane is
specific to a particular combustor geometry. Acoustic impedances to vorticity waves are
outside the scope of the present study; the importance of vorticity noise in representative
gas turbine combustion systems remains an open research question.

7.4. Compositional noise

The contribution of chemical inhomogeneities to indirect noise, or compositional noise,
was first identified by Ihme [4]. Incomplete mixing or unsteady reaction rate produces
fluctuations in gas composition. Acceleration through a nozzle converts the chemical
potential energy of a compositional inhomogeneity into acoustic energy. Rolland et al.
[32] provided experimental confirmation of the phenomenon.

Using a limit case of constant chemical potential, Magri et al. [33] argued that the
ratio of entropy noise to compositional noise is a constant, dependent on thermodynamic
and compositional state, but independent of flow conditions. The vane transfer functions
predicted by Giusti et al. [34] using a multi-species acoustic model support this view,
where entropy and compositional transfer functions are related by a proportional scaling.

The present analytical model treats the working fluid as a single homogeneous species,
and does not account for chemical inhomogeneity directly. Based on the results cited
above, however, trends in compositional impedances as a function of turbine design will
follow those of entropy impedances reported in this paper (with a constant of propor-
tionality dependent on the working fluid).
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8. Conclusions

This paper used a combination of time-marching CFD and analytical methods to
determine the modelling requirements for predicting acoustic impedance of realistic tur-
bines. For the three-dimensional multi-stage test case presented, the results show:

1. A cambered semi-actuator disk model predicts acoustic impedances to within 9%
of non-linear time-marching CFD data for incident downstream-running pressure
waves, and 14% for incident entropy waves;

2. When the acoustic impedance to plane waves is of interest, single-passage unsteady
CFD simulations offer an order of magnitude reduction in computational cost, while
producing results within 4.7% of a periodic-sector computation;

3. The influence of successive downstream turbine stages on acoustic impedance rapidly
reduces. For the present case, modelling only the front two stages is sufficient to
predict reflection coefficients for downstream-running pressure and entropy waves;

4. The acoustic impedance of a multi-stage turbine may be assumed constant during
off-design operation. To a close approximation, a multi-stage turbine operates at
constant corrected flow, which fixes Mach numbers and hence acoustic behaviour.

Next, the paper explored the three-dimensional turbine design space by applying both
the validated modelling approaches to families of parametrically generated turbine stage
geometries. These results show:

5. Acoustic impedance is insensitive to hub-to-tip radius ratio, meaning that the cur-
rent two-dimensional analytical model is accurate even for high aspect ratio stages
with HTR = 0.6. Radial variations in impedance are linear, so the impedance of a
non-uniform flow is the same as that of the corresponding mixed-out average flow;

6. Front-loading turbine blades increases acoustic impedance, because the axial Mach
number increases within the blade passage. For the turbine stage considered in this
paper, the impedance of front-loaded blades is up to 51% higher, and aft-loaded
blades up to 16% lower, compared to a datum quadratic camber line;

7. Stator–rotor axial gap affects acoustic impedance by changing the relative phase
of reflections from vane and blade rows. Increasing the gap from g/cx = 0.5 to
g/cx = 1.5 leads to variations in pressure impedance of up to ±11% at different
frequencies, and first-order variations in the entropy–acoustic transfer function;

Overall, the paper has shown that a cambered semi-actuator disk model produces quan-
titatively accurate acoustic impedance predictions for realistic turbines. The TAD model
consistently captures trends over a wide design and operating space. Accounting for axial
non-compactness and chordwise non-uniform mean flow is sufficient to produce a tool
that is broadly applicable, addressing the need for rapid assessment of turbine acoustic
impedance in an iterative design process.
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Appendix A. Mixed-out averaging procedure

This appendix defines the mixed-out averaging method used in this paper to derive
representative point values from spatially varying two dimensional flow fields. The mixed-
out state is a hypothetical, uniform state where the flow is allowed to reach equilibrium
in an infinite frictionless duct of constant area. The state is derived by conserving mass,
momentum, and energy.

Given a flow field over a constant-x plane with area A, the method seeks a uniform
state, denoted by �̆ that satisfies,

Mass:

∫∫
A

ρVx dA = ρ̆V̆xA , (A.1a)

Axial momentum:

∫∫
A

(
ρV 2

x + p
)

dA =
(
ρ̆V̆ 2

x + p̆
)
A , (A.1b)

Angular momentum:

∫∫
A

ρVxrVθ dA = ρ̆V̆xr̆V̆θA , (A.1c)

Energy:

∫∫
A

ρVx

(
h0 − rΩVθ

)
dA = ρ̆V̆x

(
h̆0 − r̆ΩV̆θ

)
A . (A.1d)

In Eqns. (A.1), Ω is the angular velocity of the reference frame, h0 is the stagnation
enthalpy, and all other symbols have their usual meaning. The mixed-out radius r̆ is
taken as the mid-span location, and assuming parallel streamlines the mixed-out state
has no radial velocity.

The total fluxes on the left-hand sides are directly evaluated from the non-uniform
flow field. A fixed-point iteration gives the right-hand side solution. First, guess a
value of mixed-out density, ρ̆ ; then evaluate V̆x , p̆ , V̆θ , and h̆0 in turn by rearranging
Eqns. (A.1); and finally calculate an updated density guess, repeating until converged.

Any averaging process entails a loss of information, and does not preserve every
integral flow property (total entropy flux increases by the mixed-out method). However,
in the present work, processing the computations using a simpler area-weighted average
yielded negligible change in the results. This suggests that, for the degrees of non-
uniformity predicted in this study, the choice of averaging method is somewhat arbitrary.
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Appendix B. Derivation of transfer matrices

This appendix presents derivations for the transfer matrices Ti that relate character-
istic waves y upstream and downstream of the ith blade row according to,

yi+1 = Tiyi . (B.1)

Appendix B.1 sets out the notation required, then Appendix B.2 derives the transfer
matrix for a flat plate cascade, as an intermediate step, and Appendix B.3 extends the
procedure to cambered blades.

Appendix B.1. Notation

The solution for of Eqn. (2) may be written as,

p′(x, t)

p
= zp ·

(
β(x)y

)
exp (2πift) , (B.2)

where,

• zp is a column vector of weights that relate amplitudes of the four characteristic
waves to the amplitude of perturbation in static pressure. The weights depend on
the mean flow and perturbation frequency. There are analogous vectors for other
flow quantities, such as stagnation temperature zT0

or entropy zs;

• β(x) is a diagonal matrix comprising terms like expβx/r that govern decay of
characteristic waves over axial distance within a control volume. The β decay
factors, different for each characteristic wave type, are functions of the mean flow
and perturbation frequency;

• y = [p̂−, p̂+, υ̂, ŝ]
t

is a column vector of characteristic wave amplitudes at the inlet
of a control volume. The solution for y depends on the imposed unsteadiness or
non-uniformity at boundaries of the machine, and indirectly depends on the mean
flow via the z and β(x) terms;

After evaluating the weights z and decay rates β(x) from the mean flow and perturbation
parameters [7, 10], the task is to determine the four characteristic wave amplitudes y
that result from given boundary conditions.

The corresponding form for the solution in blade passages is,

p̃′(x, t)

p̃
= z̃p ·

(
β̃(x)ỹ

)
exp (2πift) , (B.3)

analogous to Eqn. (B.2), where a tilde distinguishes passage quantities from their annulus
counterparts.
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Appendix B.2. Flat plate transfer matrix

First assemble weight vectors into matrices that convert characteristic waves to flow
quantities of interest in the annulus control volumes,

F =

← zt
ρVx
→

← zt
T0
→

← zt
s →

 and G =


← zt

ρVx
→

← zt
T0
→

← zt
p0 →

← zt
α →

 . (B.4)

Multiplying the characteristic wave vector by the conversion matrices, and denormal-
ising using mean flow quantities yields dimensional values of the conserved quantities.
At the leading edge (LE) of the ith blade row,(ρVx)′

T ′0
s′


i,LE

=

ρVx 0 0
0 T0 0
0 0 s


i

Fiβi(li)yi , (B.5)

where the βk(li) term accounts for decay of characteristic waves from the inlet of the
ith control volume, the defining location for yk, to the leading edge of the ith blade row
over a distance li. Similarly, for the ith passage trailing edge (TE),

(ρVx)′

T ′0
p′0
α′


i,TE

=


ρVx 0 0 0
0 T0 0 0
0 0 p0 0
0 0 0 1


i+1

Gi+1βi+1(0)yi+1 , (B.6)

where βi+1(0) = I as the passage trailing edge is coincident with the next control volume
inlet.

Similar expressions to Eqns. (B.4) evaluate the perturbations in conserved quantities
from the characteristic waves inside the blade passage,

F̃i =

← z̃t
ρVx
→

← z̃t
T0
→

← z̃t
s →


i

and G̃i =


← z̃t

ρVx
→

← z̃t
T0
→

← z̃t
p0 →

← 0 →


i

. (B.7)

The perturbations just inside the ith passage at leading and trailing edges are,(ρVx)′

T ′0
s′


i,L̃E

=

ρ̃Vx 0 0

0 T̃0 0
0 0 s̃


i

F̃iβ̃i(0)ỹi , (B.8)

and, 
(ρVx)′

T ′0
p′0
α′


i,T̃E

=


ρ̃Vx 0 0 0

0 T̃0 0 0
0 0 p̃0 0
0 0 0 1


i

G̃iβ̃i(ci)ỹi , (B.9)

where the β̃k(ci) term accounts for decay of characteristic waves along the chord.
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Enforcing boundary conditions at the leading edge requires that the right-hand sides
of Eqns. (B.5) and (B.8) are equal,

Fiβi(li)yi = F̃iβ̃i(0)ỹi , (B.10)

using the fact that the mean flow mass flux, stagnation temperature, and entropy are
all continuous at the leading edge, for example, ρVx = ρ̃Vx. At the trailing edge, the
right-hand sides of Eqns. (B.6) and (B.9) are equal,

QiGi+1βi+1(0)yi+1 = G̃iβ̃i(ci)ỹi , (B.11)

where

Qi =



(ρVx)i+1

(̃ρVx)i

0 0 0

0
T0,i+1

T̃0,i

0 0

0 0
p0,i+1

p̃0,i
0

0 0 0 1


, (B.12)

is a diagonal matrix that accounts for discontinuity in mean flow, due to stagnation
pressure losses within blade rows or injection of coolant. Eliminating ỹi from Eqns. (B.10)
and (B.11), and noting that β(0) = I, gives an expression for the transfer matrix,

yi+1 = [QiGi+1]
−1

G̃iβ̃i(ci)F̃
−1
i Fiβi(li)︸ ︷︷ ︸

flat plate transfer matrix Ti

yi . (B.13)

Appendix B.3. Cambered blade transfer matrix

The analytical model splits a cambered blade into j = 1, ..., Nj flat-plate elements, of

equal axial length ∆xi = ci/Nj . Each element has a different mean flow and hence F̃i,j
and ỹi,j vary through the passage. Applying the leading edge continuity conditions to
all the splits between elements yields the set of equations,

LE↔ 1 : Fiβi(li)yi = F̃i,1β̃i,1(0)ỹi,1 ,

1↔ 2 : F̃i,1β̃i,1(∆xi)ỹi,1 = F̃i,2β̃i,2(0)ỹi,2 ,

. . .

Nj − 1↔ Nj : F̃i,Nj−1β̃i,Nj−1(∆xi)ỹi,Nj−1 = F̃i,Nj
β̃i,Nj

(0)ỹi,Nj
,

Nj ↔ TE : G̃i,Nj
β̃i,Nj

(∆xi)ỹi,Nj
= QiGi+1βi+1(0)yi+1 .

(B.14)

Eliminating all the ỹi,j from the system of Eqns. (B.14), and putting β̃i,j(0) = I,
yields the transfer matrix for a cambered blade,

Ti = [QiGi+1]
−1

G̃i,Nj β̃i,Nj (∆xi)F̃
−1
i,Nj

 1∏
j=Nj−1

F̃i,jβ̃i,j(∆xi)F̃
−1
i,j

Fiβi(li) . (B.15)
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