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S1., 1. Before starting questions like this, it is vital to draw a large, clear, labelled diagram of the situation.
Treat as a set of thermal resistors in series; values for conduction and convection in plane geometries
are given in Lectures §1.1 and 1.3, and conduction in a cylindrical geometry in Lectures §1.5.

2. Write an expression for the total thermal resistance, conductive plus convective, as a function of
the lagging thickness; the worst possible result (maximum heat loss) corresponds to the minimum
thermal resistance. Then, equate the thermal resistance without lagging to that with lagging to
find the limiting thickness beyond which there is a benefit. The equation has no analytical solution
so must be solved numerically. The final part is a repeat with a different radius parameter.

3. The Biot number Bi = hV/λA is the ratio of internal conductive to surface convective thermal
resistances. The lumped heat capacity model, where temperature of the body is uniform, is valid for
low Bi � 1. If the temperature of the body very non-uniform due to a high conductive resistance,
we have high Bi � 1. Solutions of the heat equation in these limiting cases are in Lectures §2.1–2.2.

4., 5. The maximum possible heat transfer is (ṁcp)min(Thot,in − Tcold,in), the denominator of heat ex-
changer effectiveness. The overall heat transfer coefficient U is another way of expressing the total
thermal resistance RT,total = 1/UA with a specified reference area A. The log-mean temperature
difference is given in the Data Book; each ∆T are defined at a point in physical space not for the
hot or cold fluid. To determine the variation in temperature along the tubes, apply the First Law
to a differential element, see Lectures §3.2.

6. First look up fluid properties at the film temperature in the Data Book. This is a rough approxi-
mation because the properties vary continuously between the plate and main-stream temperatures.
The Reynolds analogy is also in the Data Book, so we can determine h from cf , and hence q̇. The
Prandtl number is the ratio of momentum to thermal diffusivities, Pr = µcp/λ. We can use this to
correct the Reynolds analogy when Pr 6= 1: from experiments St = 1

2cfPr
−2/3, see lectures §4.6.

7. Dimensional analysis tells us that Nu = fn(Re,Pr). So for similarity, we need to match Re and
Pr between the benzene and water cases. Set T first followed by V , because Pr = fn(T ) only but
Re = fn(T, V ). Because we have ensured similarity, we can then equate the Nu = hL/λ in each
case to evaluate the real h.

8. Remember that the Grashof number is analogous to the Reynolds number for forced convection,
and think about what the Reynolds number characterises. As the first step, list fluid properties
at the film temperature. Recall that the coefficient of expansion β = ∂v/∂T |p/v, and we already
know an equation of the form v = fn(p, v) for an ideal gas. We now have enough information to
calculate Gr and evaluate the correct correlation for Nu.

9. As always, get the fluid properties at the film temperature first. Write an expression for Rex = fn(x)
and substitute into the correlation to get an expression for Nux(x). Then the definition of Nusselt
number can be rearranged to give h(x), and q̇ = h(x)(Tw(x) − T∞) then gives Tw(x) for the
known uniform q̇. Finally, the expression for Tw(x) can be evaluated at x = L and integrated over
0 < x < L to give the requested temperatures.


