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Abstract

This document outlines the methods used to answer each question on the second
Thermodynamics examples paper. Some more general information is included for
interest. This material is intended to complement to the more detailed worked
solutions available in the official cribs. Statements of physical principles and defi-
nitions are highlighted in bold, while assumptions are emphasised.

Q1: Helmholtz function

(a)

Begin with the definition of specific Helmholtz function as stated, and put into differ-
ential form. Eliminate the entropy differential using the T ds equation and apply the
boundary conditions to remove the temperature differential.

Aside. The T ds equation, or more formally the “fundamental thermodynamic rela-
tion”, incorporates both the First and Second Laws into one expression describing all
changes of thermodynamic state for a system with a uniform temperature and pressure.

T ds = du− pdv (1)

In Part I, you derive the T ds equation using the Second Law for a reversible process,
that is δS = δQ/T . This is the easiest way to complete the derivation, but leads to
some confusion as the equation is also true for irreversible processes. This must be so,
because Eqn. (1) only includes thermodynamic state variables, which contain no infor-
mation of the details of the process they are undergoing. This is not true of equations
featuring, for example, Q.
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(b)

First write the constant total volume and constant total mass constraints in differential
form by differentiating the given expressions. Then differentiate the total Helmholtz
function to get an expression for dF which is the quantity of interest. Combine these
three equations and simplify. Don’t forget the definitions of f , g and h. The question
suggests that we need an expression in terms of the specific Gibbs function.

At equilibrium, the analysis in Lecture 5 shows that, for a system held at constant V
and T , as in this question, the Helmholtz function is a minimum at equilibrium, that is
dF = 0. If we imagine making an infinitesimal mass transfer between the phases, from
the equilibrium position, dF should remain zero. Given this fact, inspection of your
expression for dF will yield the equilibrium condition.

Q2: Clausius–Clapeyron equation

Begin by quoting the Clausius–Clapeyron equation from the lecture notes (you must
remember this for the exam),

dps

dT
=

hfg

vfgT

We want to find an expression for the ratio of saturated vapour pressures between two
states, ps2/ps1. Since we have an expression for dps/dT we proceed by integrating
with respect to T . It is stated that hfg can be taken as a constant, but the dependency of
vfg on T is not known. The two approximations required to proceed are: water is much
denser than steam (look in the tables if you are not convinced), and that the vapour
phase behaves as a perfect gas (true in the limit of low pressure). Now we can perform
the integration. We want to end up with terms in psi, Ti, and constants.

Q3: Maxwell relation

(a)

The process for deriving a Maxwell relation is described in the lecture notes. Briefly,

1. Write an expression for a small change in the dependent thermodynamic variable
( f in this case) in terms of partial derivatives with respect to the two independent
thermodynamic variables (v and T in this case)

2. Write an expression for a small change in the dependent thermodynamic variable
by differentiating its definition and manipulating using the T ds equation.

3. Compare the two to get a pair of first-derivative relations.

4. The Maxwell relation is found by differentiating again and applying equality of
the mixed partial derivatives.
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(b)

Give the ideal gas equation of state, we can directly evaluate the left-hand side of the
Maxwell relation. We are interested in u, so must use the T ds equation to link the
right-hand side of the Maxwell relation with u. Dividing through by v at constant T
we arrive at an expression for ∂u/∂v|T , which can be integrated to get u, and then
differentiated again (but with respect to T ) to get cv.

Q4: Characteristic equation of state

(a)

The p-v-T equation of state is just any expression relating these quantities for a par-
ticular substance. A more familiar p-v-T equation of state is pv = RT for an ideal
gas. Two thermodynamic variables are needed to define a state, and so any (physically
correct) equation relating three thermodynamic variables completely characterises the
thermodynamic properties of the substance.

We have f = f (v,T ), so it would be convenient if we could find an expression for pres-
sure in terms of f and its derivatives with respect to v and T . One of the intermediate
results from Q3 is helpful here.

(b)

Entropy can be found using another of the intermediate results from Q3. Then, internal
energy can be found using the definition of f , and cv by differentiation of u.

To reveal the significance of T0 and v0, it is instructive to set T = T0 and v = v0 in the
expressions derived above.

(c)

Starting from the right-hand side of the given equation,

cp− cv =
∂h
∂T

∣∣∣
p
− c

using the definition of cp and the value of cv = c from part (b). Now substituting
h = u+ pv and splitting the differential,

cp− cv =
∂

∂T

[
u+ pv

]
p
− c

cp− cv =
∂u
∂T

∣∣∣
p
+ p

∂v
∂T

∣∣∣
p
− c

The end result retains the factor ∂v/∂T |p, which suggests that we can leave the sec-
ond term on the right-hand side alone. Expanding the first ∂u/∂T |p term using our
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expression for u from part (b),

cp− cv =
∂

∂T

[
c(T −T0)−a

(
1
v
− 1

v0

)]
p
− c

cp− cv = c−a
∂

∂T

[1
v

]
p
+ p

∂v
∂T

∣∣∣
p
− c

cp− cv =−a
∂

∂T

[1
v

]
p
+ p

∂v
∂T

∣∣∣
p

If we are taking a partial differential with respect to T at constant p, because v is not
then independent and will be a function of T the chain rule is required,

∂

∂T

[1
v

]
p
=

∂v
∂T

∣∣∣
p

∂

∂v

[1
v

]
p
=
−1
v2

∂v
∂T

∣∣∣
p

so that the final expression is then,

cp− cv =
a
v2

∂v
∂T

∣∣∣
p
+ p

∂v
∂T

∣∣∣
p

cp− cv =
(

p+
a
v2

)
∂v
∂T

∣∣∣
p

cp− cv =

(
RT

v−b

)
∂v
∂T

∣∣∣
p

using the expression for p in part (a).

Q5: van der Waals equation of state

This is, more or less, a mathematical exercise with little thermodynamics involved. b
is the ’excluded volume’ and, all other things being constant, leads to a larger specific
volume of the non-ideal gas. This is the deviation from ideal gas behaviour (where
molecules are modelled as point masses) due to the microscopic size of the molecule. a
acts, all other things being equal, to reduce the pressure. The ideal gas model neglects
intermolecular forces; the real attractive force of the molecules towards each other
reduces the force exerted on the container.

Q6: Simple equilibrium

This is a basic equilibrium question, as in the lecture notes. In brief,

1. Write a general chemical equation for the reaction with n unknown coefficients
for each of the n products.

2. Applying conservation of atoms will yield n− 1 equations; the system must be
closed by introducing the equilibrium constant Kp, the value of which can be
found in the Data Book.

3. Write an expression for Kp using partial pressures, then convert to mole fractions
times the mixture pressure.
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4. Solve the system of equations, by eliminating successive variables until one re-
mains, then solve analytically or iteratively.

Because the stoichiometric coefficients sum to zero in this case, the mixture pressure
does not appear in the expression for Kp. Physically, this is because the number of
moles, and hence total volume, on each side of the reaction is the same.

Q7: Advanced equilibrium

(a)

We are instructed to neglect dissociation of H2O, so we assume that the H2 oxidation
reaction goes to completion, or another way of stating this is that there is no H2 present
in the equilibrium mixture.

We are told that the CO and H2 are in molar proportions 3:1, with stoichiometric O2.
Looking at reaction number (7) in the Data Book, for each molecule of CO we need
1
2 O2 for stoichiometric combustion. Looking at reaction number (5) in the Data Book,
for each molecule of H2 we also need 1

2 O2 for stoichiometric combustion. So for 3
moles of CO and 1 of H2 we need 2O2,

3CO+H2 +2O2 → aH2O+bCO2 + cCO+dO2

From this equation, the 3 atom balance equations can be derived. It follows that a = 1
without further manipulation. The expression for Kp for reaction (7) is,

Kp =

(
pCO

p0

)−1( pO2

p0

)−1/2( pCO2

p0

)1

Remember that in this expression p0 is not the mixture pressure. It is simply standard
pressure, 1 bar, as stated next to the definition of Kp in the Data Book. Converting to
mole fractions using the final mixture pressure p2, and n = a+b+ c+d,

Kp =

(
XCO

p2

p0

)−1(
XO2

p2

p0

)−1/2(
XCO2

p2

p0

)1

Kp =

(
c
n

p2

p0

)−1(d
n

p2

p0

)−1/2(b
n

p2

p0

)1

Kp =
b
c

√
n
d

p0

p2

To proceed we need information on the final mixture pressure p2. We are told to assume
that all species behave as ideal gases, suggesting that we should use the ideal gas
equation of state. Initially,

p1V = n1RT1, (2)

where p1 and T1 are the given initial pressure and temperature, R is the molar gas
constant, and V is the volume of the constant volume combustor. The initial number of
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moles can be set to n1 = 6 based on the left-hand side of the chemical equation. After
combustion,

p2V = nRT2, (3)

where T2 is the given final temperature at p2 is the unknown final pressure. Taking the
ratio of Eqns. (2) and (3) gives the final pressure as a function of n and other known
quantities.

Now, the system of equations is close and can be solved iteratively.

(b)

Slight dissociation implies that the number of moles of the other products is barely
changed, i.e. the percentage changes in a, b, c, d, and n are small. The chemical
equation becomes,

3CO+H2 +2O2 → aH2O+bCO2 + cCO+dO2 +δH2

Writing the Kp expression for reaction (5), there is only one unknown δ .

Q8: van’t Hoff’s equation

(a)

There is not conservation of atom information in this question, but we know by stoi-
chiometry that the number of moles of A2 and A3 must be equal. In this situation, the
chemical equation is,

A1 → (1− x)A1 +
x
2

A2 +
x
2

A3

The equilibrium constant for this reaction is defined,

K(T ) =
(

pA1

p0

)−1( pA2

p0

)1/2( pA3

p0

)1/2

Substituting for the partial pressures

K(T ) =
(

1− x
1

p2

p0

)−1(x/2
1

p2

p0

)1/2(x/2
1

p2

p0

)1/2

,

K(T ) =

√
x/2
√

x/2
1− x

,

which can be solved for x in terms of K(T ), and hence the mole fractions.

The molar enthalpy is simply a weighted sum of the mole fractions and molar en-
thalpies.
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(b)

From the definition of c̄p,

c̄p =
∂ h̄
∂T

∣∣∣
p
=

∂

∂T

[ h̄1 +Kh̄2 +Kh̄3

2K +1

]
p
.

After some manipulation using the product and chain rules,

c̄p =
c̄p1 +Kc̄p2 +Kc̄p3

2K +1
+

1

(2K +1)2
dK
dT

(
−2h̄1 + h̄2 + h̄3

)
.

The last term in brackets is just the enthalpy of reaction, ∆H̄0
T . The dK/dT term can be

eliminated using the van’t Hoff equation to arrive at the given answer:

c̄p =
c̄p1 +Kc̄p2 +Kc̄p3

2K +1
+

2KR

(2K +1)2

(
∆H̄0

T

RT

)2

.

The first term is a weighted sum of the molar specific heat capacities, i.e. the heat
capacity at constant composition. The second term accounts for the shift in the compo-
sition as temperature changes. Because the second term is always positive, it increases
the specific heat capacity. Then, for a given enthalpy change, the temperature change
is reduced.

7


