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Abstract

This document outlines the methods used to answer each question on the first
Power Generation examples paper. The results are commented on, and extra infor-
mation is included for interest. This material is intended to complement the more
detailed worked solutions available in the official cribs. Statements of physical
principles and definitions are highlighted in bold, while assumptions are empha-
sised; we are told to treat air as a perfect gas throughout.

Q1: Basic gas turbine

Work ratio. First we want an expression for the ratio of compressor work input to
the turbine work output. If the turbomachinery is adiabatic, then from the First Law
the work is just the change in enthalpy between the start and end states. Strictly, the
relevant change is in stagnation enthalpy, but if the flow velocities are low there is
no distinction between static and stagnation states. We are not explicitly told that we
can make either of these assumptions, but in practice they are accurate enough, and in
any case we have none of the information needed to relax them. It is Part I material
to determine expressions for the two work flows in terms of isentropic efficiency and
temperature changes. Then, an expression for the ratio can be written and simplified to
a neat form.

An exercise. Starting from a statement of the First Law, deduce non-dimensional
ratios which quantify the accuracy of both assumptions made above, that is neglect of
kinetic energy and heat loss. These will be of the form,

neglected quantity
important quantity

� 1.

Efficiencies. To calculate the cycle efficiency, we also need the heat input to the com-
bustor, which is found from applying the First Law to it. The Joule cycle is a simpler
model of our gas turbine. The standard assumptions are that all processes are reversible,
that the working fluid is a perfect gas, and that the turbomachinery is adiabatic. The
Joule cycle efficiency depends only on the pressure ratio, and the derivation is Part I
material.
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Q2: Advanced gas turbine

Air-fuel ratio. In this question, our model of the gas turbine is improved by includ-
ing the combustion process and accounting for the fuel mass flow. The combustion
calculation is very similar to those encountered in the first part of the course. Begin
with the First Law,

(ṁa + ṁf)hp(T3)− ṁaha(T2)− ṁfhf(T0) = 0, (1)

where subscript a denotes air, subscript f denotes fuel and subscript p denotes products.
To proceed we need to put this in a form with enthalpy differences, because each of
the datum levels for the fuel, air and combustion products are arbitrary. The extra
information needed is brought in using an experimental measured value for the standard
enthalpy change of reaction, defined,

ṁf∆H0 = (ṁa + ṁf)hp(T0)− ṁaha(T0)− ṁfhf(T0). (2)

Subtracting Eqn. (1) from Eqn. (2), treating the air and combustion products as two
different perfect gases, and dividing through by ṁf yields,

ṁf∆H0 = ṁa [ha(T2)−ha(T0)]+(ṁa + ṁf)
[
hp(T3)−hp(T0)

]
,

∆H0 =
ṁa

ṁf
cp,a [T2−T0]+

(
ṁa

ṁf
+1

)
cp,p [T3−T0] ,

which can be rearranged for the air-fuel ratio ṁa/ṁf. Now we know the air-fuel ratio
we do not need to neglect the fuel mass flow in later calculations.

Cycle analysis. Now the combustor is dealt with, we can work out the rest of the
states around the cycle and calculate some performance metrics. Fairly straightfor-
ward, but we have to be careful with a couple of things. Firstly, the mass flow in the
turbine and downstream components is increased by a factor (1+ ṁf/ṁa) relative to
the compressor because of the fuel addition. Secondly, the combustion products have
different perfect-gas properties to standard air.

Q3: Intercooled cycle

Setting up the problem. The quantity of interest is the total compressor work input.
The first step is to get an expression for this dependent variable as a function of the
independent variable that we are changing: the first compressor pressure ratio. With
the usual method (First Law, isentropic efficiency, perfect gas) the work input for
each of the compressors is,

−ẇx,12 =
cpT1

ηc
(r12−1) , (3a)

−ẇx,34 =
cpT3

ηc
(r34−1) , (3b)

where r is the isentropic temperature ratio, r = r(γ−1)/γ
p , and the first and second com-

pressors are operating between states 1→ 2 and 3→ 4 respectively. The first com-
pressor outlet temperature, T2, and hence the second compressor inlet temperature, T3
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depend on the first compressor pressure ratio so T3 must be eliminated. Using the
definitions of heat exchanger effectiveness and isentropic efficiency,

T3 = T2−K (T2−T1) , ηc =
T2s−T1

T2−T1
=

r−1
T2/T1−1

,

⇒ T3 = T1

[
1− 1

ηc
(K−1)(r12−1)

]
. (4)

Then combining Eqns. (3) and (4) the total work input is,

−ẇx,tot =−ẇx,12 +−ẇx,34,

−ẇx,tot =
cpT1

ηc

[
(r12−1)+(r34−1)− 1

ηc
(K−1)(r12−1)(r34−1)

]
. (5)

Optimising the pressure ratio. To find the maximum value of Eqn. (5) is a classic
stationary points problem–we differentiate and set the derivative to zero. The only
complication is that Eqn. (5) contains terms in r34 which is a function of r12. We know
that the overall pressure ratio is fixed, i.e. rtot = r12r34 = const., so this could be used
to eliminate r34. The neatest way is to deal with the r34 terms implicitly, as,

d
dr12

(−ẇx,tot) =
cpT1

ηc

[
1+

dr34

dr12
− (K−1)

ηc
(r34−1)− (K−1)

ηc
(r12−1)

dr34

dr12

]
,

d
dr12

(−ẇx,tot) =
cpT1

ηc

[(
1− (K−1)

ηc
(r34−1)

)
+

dr34

dr12

(
1− (K−1)

ηc
(r12−1)

)]
Now we find dr34/dr12,

rtot = r12r34 = const. ⇒ dr34

dr12
=− rtot

r2
12
.

Substituting in and setting to zero for the maximum work yields,

d
dr12

(−ẇx,tot) =
cpT1

ηc

[
1− (K−1)

ηc

(
rtot

r12
−1

)
− rtot

r2
12

(
1− (K−1)

ηc
(r12−1)

)]
d

dr12
(−ẇx,tot) =

cpT1

ηc

[
1− rtot

r2
12
− (K−1)

ηc

(
rtot

r12
−1− rtot

r12
+

rtot

r2
12

)]
d

dr12
(−ẇx,tot) =

cpT1

ηc

(
1− rtot

r2
12

)(
1+

(K−1)
ηc

)
= 0. (6)

Equation (6) is satisfied if either of the terms in brackets are zero, that is,

r12 =
√

rtot or ηc = 1−K.

The first of these is the solution we are looking for. The second is not likely to be
applicable in practice, as both ηc and K are typically significant fractions of unity,
greater than 0.5, say. In the second case, Eqn. (5) reduces to,

−ẇx,tot =
cpT1

ηc
(rtot−1) ,

so the total work output is a function only of the total pressure ratio, and not the com-
pression split.

3



Q4: Effect of turbine entry temperature on efficiency

(a) The cycle efficiency is defined,

η =
Wt−Wc

Q
. (7)

If the compressor pressure ratio is maintained, then Wc does not change and η is a
function of the two independent variables Wt and Q only. We can then express a small
change in cycle efficiency δη as,

δη =
∂η

∂Wt

∣∣∣
Q

δWt +
∂η

∂Q

∣∣∣
Wt

δQ

This is a multi-variable, first-order Taylor series expansion as in the Mathematics Data
Book. We can evaluate these partial derivatives directly from Eqn. (7), simplify, and
divide through by η to get the desired result:

δη =
1
Q

δWt−
Wt−Wc

Q2 δQ

δη =
δWt

Q
−Wt−Wc

Q
δQ
Q

⇒ δη

η
=

δWt

ηQ
− δQ

Q

(b) Since we have an expression for δη , our task is to put it in terms of δT3 which
will allow us to then divide through and take the limit δT3 → 0 to find ∂η/∂T3. Ex-
pressions for δQ and δWt can either be found by consideration of the T –s diagram,
or differentiation of expressions for Q and Wt. The assumption that turbine polytropic
efficiency does not change with T3 allows T4 to be expressed as a function of T3. Eval-
uating the final result gives ∂η/∂T3 = 8.6×10−5 K−1, or in more sensible terms we
need a temperature increase of order 100K to get an extra percent on cycle efficiency.

Q5: Recuperated gas turbine

(a) On the vertical axis should be stream temperature, on the horizontal axis fraction
of heat transferred. The exhaust is giving up heat to the inlet stream, and vice versa.
Pay attention to the slope of each line: think of the First Law applied to a differential
element of one stream, and what the slope of the graph represents physically.

(b) Applying both the definition of heat exchanger effectiveness and the First Law
over the heat exchanger allows determination of the combustor inlet temperature, T4′

in the lecture notes nomenclature. This can then replace T2 in the expression derived
for the air-fuel ratio in Q2. It will be found that the air-fuel ratio increases. This
makes sense, because the recuperation has already heated the compressor delivery air
somewhat, so less fuel is needed to bring it to the same combustor outlet temperature.
We are getting the same work with less external heat addition (if we draw a control
volume around the power plant, the recuperator is within it) so the efficiency increases.
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(c) The same method from Q2 can be used to calculate the exhaust temperature and
hence exergy flow rate. These are both reduced, quantitatively reflecting the benefit of
recuperation.

Q6: Effect of coolant flow rate on efficiency

(a) With the usual assumptions, we have the following expressions for the turbine
work,

without cooling: Wt = cp (T3−T4) , (8a)
with cooling: Wt = (1−δm)cp (T3−Tm)+ cp (Tmix−T4m) , (8b)

using the state nomenclature from the lecture notes. There are two unknowns in these
equations: Tmix and T4m. The former can be found by applying the First Law to the
constant-pressure mixing process. The latter can be found assuming the polytropic
efficiency is not a function of mass flow, which fixes the temperature ratio across the
second part of the expansion. The change in turbine work can then be found by sub-
tracting Eqns. (8b) and (8a).

(b) The heat input is a function of mass flow and combustor inlet and outlet tempera-
tures. T2 and T3 are fixed so the only contribution to the change in heat input δQ is due
to the reduction in mass flow of δm. Substituting expressions for δWt and δQ into the
first result of Q4 yields the answer.

(c) For a small change in efficiency due to both changes in T3 and δm,

δη =
∂η

∂T3

∣∣∣
m

δT3 +
∂η

∂m

∣∣∣
T3

δm.

The partial derivatives have been worked out previously, in Q4(b) and Q6(b) respec-
tively. Substituting these in and dividing through by δT3 yields the required result when
δT3→ 0.

(d) What the question is asking for is the range of values for dm/dT3 which satisfy the
inequality ∂η/∂T3|r > 0 at the values of temperature and cycle efficiency associated
with a particular gas turbine. This comes out at dm/dT3 ≥ 1365K, i.e. to bother with
cooling at all we should be able to increase T3 by at least 13K for every 1% of cooling
air used.

(e) The other advantage of increasing T3 is that the specific work output increases.
This means that less mass flow is required for the same power, and hence the flow area
can be reduced, and the machine can be reduced in overall size. As cost (very approxi-
mately) scales with the volume of the machine, this is an important consideration.
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