IB Paper 7: Probability How do Moment Generating Functions Work?

James Brind
jb753@cam.ac.uk

Lent Term 2018

Abstract

This note shows how the definition of moment generating functions leads to short cuts to calculating mean, variance and higher moments of a distribution. Expanding the generating function as a power series, is demonstrated that if it is differentiated n times, the leading order term includes a component in $\mathbb{E}\left[X^{n}\right]$ which can be used to calculate the nth moment.

Continuous generating functions

Start with the continuous case because the algebra is tidier. We have a continuous random variable X. Define a function f of a 'transform variable' s which takes the form,

$$
f(s)=\exp (-s X)
$$

The exponential can also be written as a power series (see Maths Data Book),

$$
f(s)=1+(-s X)+\frac{(-s x)^{2}}{2!}+\frac{(-s x)^{3}}{3!}+\mathscr{O}\left(s^{4}\right) .
$$

Now define the continuous generating function $g(s)$ to be the expectation of f, across all possible values of X with s fixed,

$$
g(s)=\mathbb{E}[f(s)]=1-s \mathbb{E}[X]+\frac{s^{2}}{2} \mathbb{E}\left[X^{2}\right]-\frac{s^{3}}{6} \mathbb{E}\left[X^{3}\right]+\mathscr{O}\left(s^{4}\right) .
$$

Calculate the derivatives of g, and evaluate at $s=0$ to keep only the leading order term,

$$
\begin{aligned}
g^{\prime}(s) & =-\mathbb{E}[X]+s \mathbb{E}\left[X^{2}\right]-\frac{s^{2}}{2} \mathbb{E}\left[X^{3}\right]+\mathscr{O}\left(s^{3}\right) \quad \Rightarrow \quad g^{\prime}(0)=-\mathbb{E}[X], \\
g^{\prime \prime}(s) & =\mathbb{E}\left[X^{2}\right]-s \mathbb{E}\left[X^{3}\right]+\mathscr{O}\left(s^{2}\right), \quad \Rightarrow \quad g^{\prime \prime}(0)=\mathbb{E}\left[X^{2}\right] .
\end{aligned}
$$

So the mean and variance are,

$$
\mathbb{E}[X]=-g^{\prime}(0), \quad \text { and } \quad \mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=g^{\prime \prime}(0)-g^{\prime}(0)^{2}
$$

This procedure works for any nth moment, because if the generating function is differentiated n times, the leading order term includes a component in $\mathbb{E}\left[X^{n}\right]$.

Discrete generating functions

We have a discrete random variable X. Define a function f of a 'transform variable' z which for a particular value of X takes the form,

$$
f(z)=z^{X} .
$$

Differentiating with respect to z, with X fixed,

$$
\begin{aligned}
f^{\prime}(z) & =X z^{X-1} \\
f^{\prime \prime}(z) & =X(X-1) z^{X-2}
\end{aligned}
$$

Write $f(z)$ as a Taylor series about $z=1$. Using the Maths Data Book notation, $x=1$ and $h=z-1$. We have,

$$
f(z)=f(1)+(z-1) f^{\prime}(1)+\frac{(z-1)^{2}}{2!} f^{\prime \prime}(1)+\mathscr{O}\left((z-1)^{3}\right) .
$$

Substituting for the derivatives of f evaluated at $z=1$,

$$
f(z)=1+(z-1) X+\frac{(z-1)^{2}}{2} X(X-1)+\mathscr{O}\left((z-1)^{3}\right) .
$$

Now define the discrete generating function $g(z)$ to be the expectation of f, across all values of X with z fixed,

$$
g(z)=\mathbb{E}[f(z)]=1+(z-1) \mathbb{E}[X]+\frac{(z-1)^{2}}{2} \mathbb{E}[X(X-1)]+\mathscr{O}\left((z-1)^{3}\right)
$$

Calculate derivatives of g and then evaluate at $z=1$ to keep the leading order term,

$$
\begin{aligned}
g^{\prime}(z) & =\mathbb{E}[X]+(z-1) \mathbb{E}[X(X-1)]+\mathscr{O}\left((z-1)^{2}\right) \quad \Rightarrow \quad g^{\prime}(1)=\mathbb{E}[X], \\
g^{\prime \prime}(z) & =\mathbb{E}[X(X-1)]+\mathscr{O}((z-1)) \quad \Rightarrow \quad g^{\prime \prime}(1)=\mathbb{E}[X(X-1)]=\mathbb{E}\left[X^{2}-X\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X] .
\end{aligned}
$$

So the mean and variance are, in these terms,

$$
\begin{gathered}
\mathbb{E}[X]=g^{\prime}(1), \\
\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\left(\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]\right)+\mathbb{E}[X]-\mathbb{E}[X]^{2}, \\
\mathbb{V}[X]=g^{\prime \prime}(1)+g^{\prime}(1)-g^{\prime}(1)^{2} .
\end{gathered}
$$

This procedure works for any nth moment, because if the generating function is differentiated n times, the leading order term includes a component in $\mathbb{E}\left[X^{n}\right]$.

