IB Paper 7: Probability
 Notes on Examples Paper 4

James Brind
jb753@cam.ac.uk

Lent Term 2024

Q4: Poisson's equation

We seek a solution to

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-\cos \frac{\pi x}{2 L} \tag{1}
\end{equation*}
$$

(i)

To verify that some function is a solution to the differential equation, we can substitute the function for ϕ in Eqn. (1) and check the result is consistent:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}}\left[A \cos \frac{\pi x}{2 L}\right]+\frac{\partial^{2}}{\partial y^{2}}\left[A \cos \frac{\pi x}{2 L}\right] & =-\cos \frac{\pi x}{2 L} & & \text { set } \phi=A \cos \frac{\pi x}{2 L} \text { in Eqn. (1) } \\
-A\left(\frac{\pi}{2 L}\right)^{2} \cos \frac{\pi x}{2 L}+0 & =-\cos \frac{\pi x}{2 L} & & \text { evaluate } x \text { derivative } \\
\Rightarrow A & =\left(\frac{2 L}{\pi}\right)^{2} & & \text { consistent for this value of } A
\end{aligned}
$$

This shows that the given function satisfies the differential equation if $A=\left(\frac{2 L}{\pi}\right)^{2}$.
(ii)

We need to combine the original governing equation and the newly defined ϕ_{0}, recognising that our chosen value of A makes all terms not involving ϕ_{0} sum to zero:

$$
\begin{align*}
\frac{\partial^{2}}{\partial x^{2}}\left[\phi_{0}+A \cos \frac{\pi x}{2 L}\right]+\frac{\partial^{2}}{\partial y^{2}}\left[\phi_{0}+A \cos \frac{\pi x}{2 L}\right] & =-\cos \frac{\pi x}{2 L} & & \text { set } \phi=\phi_{0}+A \cos \frac{\pi x}{2 L} \text { in Eqn. (1) } \\
\frac{\partial^{2} \phi_{0}}{\partial x^{2}}+\frac{\partial^{2} \phi_{0}}{\partial y^{2}}+\frac{\partial^{2}}{\partial x^{2}}\left[A \cos \frac{\pi x}{2 L}\right]+\frac{\partial^{2}}{\partial y^{2}}\left[A \cos \frac{\pi x}{2 L}\right] & =-\cos \frac{\pi x}{2 L} & & \text { split up the derivatives } \\
\frac{\partial^{2} \phi_{0}}{\partial x^{2}}+\frac{\partial^{2} \phi_{0}}{\partial y^{2}} & =0 & & \text { from part (i) } \tag{2}
\end{align*}
$$

So we have eliminated the right-hand side from Eqn. (1) by expressing it in terms of ϕ_{0}, which will make solution by separation of variables possible.
Converting the boundary conditions by substitution of $\phi_{0}=\phi-A \cos \frac{\pi x}{2 L}$:

$$
\begin{array}{lll}
\phi(x= \pm L, y)=0 & \Rightarrow \quad \phi_{0}(x= \pm L, y)=0 & \text { because } \cos \pi / 2=0 \\
\phi(x, y= \pm d)=0 & \Rightarrow \quad \phi_{0}(x, y= \pm d)=-A \cos \frac{\pi x}{2 L} &
\end{array}
$$

(iii)

To separate the variables, we postulate: $\phi_{0}(x, y)=X(x) Y(y)$ and then:

$$
\begin{align*}
\frac{\partial^{2}}{\partial x^{2}}[X Y]+\frac{\partial^{2}}{\partial y^{2}}[X Y] & =0 & & \text { substitute our } \phi_{0} \text { into Eqn. (2) } \\
X^{\prime \prime} Y+X Y^{\prime \prime} & =0 & & \text { take derivatives } \\
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y} & =c & & \text { rearrange } \tag{5}
\end{align*}
$$

In Eqn. (5), we have two terms that are functions of x only and y set equal. Because x and y are independent variables, and variation of one does not imply change in another, the only way the equation can be valid for all x and y is if both sides evaluate to the same constant.
The separation constant is denoted c and is either positive, negative or zero; the boundary conditions determine which of these possibilities. The only way to work out the sign of the separation constant is to make a guess and look for a contradiction with the boundary conditions. Splitting Eqn. (5) into two ordinary differential equations:

$$
\begin{align*}
X^{\prime \prime}-c X & =0 \tag{6}\\
Y^{\prime \prime}+c Y & =0 \tag{7}
\end{align*}
$$

where the first-order coefficients have opposite signs.
If $c<0$, then Eqns. (6) and (7) have the standard general solutions:

$$
\begin{align*}
& X=B \cos k x+C \sin k x \tag{8}\\
& Y=D \cosh k y+E \sinh k y \tag{9}
\end{align*}
$$

where $c=-k^{2}$. This is what we want, because the $y= \pm d$ boundary condition in Eqn. (4) has a $\cos \frac{\pi x}{2 L}$, matching the functional form of Eqn. (8).
If $c>0$, then Eqns. (6) and (7) have the general solutions:

$$
\begin{align*}
& X=B \cosh k x+C \sinh k x \tag{10}\\
& Y=D \cos k y+E \sin k y \tag{11}
\end{align*}
$$

where $c=k^{2}$. This is not what we want, because we cannot create $\phi_{0} \propto \cos \frac{\pi x}{2 L}$ on the $y= \pm d$ boundary condition by picking values of B and C in Eqn. (10).
If $c=k=0$, then integrating twice we have linear solutions for X and Y, which again contradict our $\cos \frac{\pi x}{2 L}$ boundary condition.
Proceeding as in Eqns. (8) and (9), with $c<0$ and $c=-k^{2}$ the complete general solution is the product of X and Y :

$$
\begin{equation*}
\phi_{0}=X Y=[B \cos k x+C \sin k x][D \cosh k y+E \sinh k y] \tag{12}
\end{equation*}
$$

Now to fix the values of B, C, D, and E by applying the boundary conditions. By equating the terms inside cos functions in Eqns. (12) and (4), we see that

$$
\begin{equation*}
k x=\frac{\pi x}{2 L} \quad \Rightarrow \quad k=\frac{\pi}{2 L} \tag{13}
\end{equation*}
$$

Then on $y=+d$

$$
\begin{equation*}
\left[B \cos \frac{\pi x}{2 L}+C \sin \frac{\pi x}{2 L}\right]\left[D \cosh \frac{\pi d}{2 L}+E \sinh \frac{\pi d}{2 L}\right]=-A \cos \frac{\pi x}{2 L} \tag{14}
\end{equation*}
$$

There is no sin term on the right-hand side, so $C=0$. Equation (14) then becomes

$$
\begin{equation*}
B\left[D \cosh \frac{\pi d}{2 L}+E \sinh \frac{\pi d}{2 L}\right]=-A \tag{15}
\end{equation*}
$$

Proceeding similarly for $y=-d$

$$
\begin{equation*}
B\left[D \cosh \frac{\pi d}{2 L}-E \sinh \frac{\pi d}{2 L}\right]=-A \tag{16}
\end{equation*}
$$

where we have used the fact that $\cosh (-z)=\cosh (z)$ is an even function and $\sinh (-z)=-\sinh (z)$ is an odd function. This is why we chose hyperbolic functions for the Y solution. We could have used exponentials instead, but they lack this symmetry property.
Adding Eqns. (15) and (16):

$$
\begin{equation*}
2 B D \cosh \frac{\pi d}{2 L}=-2 A \quad \Rightarrow \quad B D=\frac{-A}{\cosh \frac{\pi d}{2 L}} \tag{17}
\end{equation*}
$$

Subtracting Eqns. (15) and (16):

$$
\begin{equation*}
2 B E \sinh \frac{\pi d}{2 L}=0 \quad \Rightarrow \quad E=0 \tag{18}
\end{equation*}
$$

We now have the constants we need and ϕ_{0} is:

$$
\begin{equation*}
\phi_{0}=\frac{-A}{\cosh \frac{\pi d}{2 L}} \cos \frac{\pi x}{2 L} \cosh \frac{\pi y}{2 L} \tag{19}
\end{equation*}
$$

Lastly, we convert back to $\phi=\phi_{0}+A \cos \frac{\pi x}{2 L}$ and put $A=\left(\frac{2 L}{\pi}\right)^{2}$.

$$
\begin{align*}
& \phi=\frac{-A}{\cosh \frac{\pi d}{2 L}} \cos \frac{\pi x}{2 L} \cosh \frac{\pi y}{2 L}+A \cos \frac{\pi x}{2 L} \tag{20}\\
& \phi=\left(\frac{2 L}{\pi}\right)^{2} \cos \frac{\pi x}{2 L}\left[1-\frac{\cosh \frac{\pi y}{2 L}}{\cosh \frac{\pi d}{2 L}}\right] \tag{21}
\end{align*}
$$

