Solving equations numerically

James Brind jb753@cam.ac.uk

Lent Term 2022

This note describes methods for solving equations numerically, when there is no analytical solution, that might be encountered in Examples Papers or Tripos questions. Suppose we seek a solution for x satisfying,

$$f(x) = x^2 - 3 - \ln x = 0.$$
 (1)

WolframAlpha The quickest approach is to type a query (clickable link) into the WolframAlpha website. This shows a nice graph of the function and gives two solutions, x = 0.0499 or x = 1.91. WolframAlpha is also good for checking integrals, limits, or unwieldy algebra manipulations.

Trial and improvement In Tripos exams, we only have access to a calculator. The slowest but most robust way to find a solution is trial and improvement. We guess different values of x, evaluate the function, compare to zero, and refine our guesses until we reach a desired precision,

f(x=1)	= -2	too small;
f(x=2)	= 0.307	too big, but closer;
f(x = 1.75)	= -0.497	too small, but closer;
f(x = 1.9)	= -0.032	close enough.

Fixed-point iteration Rearranging to make an x the subject of Eqn. (1), $x_{i+1} = \sqrt{\ln x_i + 3}$, where we have indexed values of x over i to show that they form a sequence. We can calculate successive terms in this sequence quickly with our calculator by using the **Ans** variable to store x_i and repeatedly hitting the = button. The inputs are,

Key input	Screen output
1 =	1
sqrt(ln(Ans)+3) =	$\sqrt{3}$
=	1.91
=	1.91

Another rearrangement of Eqn. (1), $x_{i+1} = \exp(x^2 - 3)$, finds the second root.

Calculator solve Your calculator is equipped with a solve function, which is the easiest and fastest way to tackle the problem. The steps are,

- Enter the equation using X as the unknown to solve for with ALPHA,), and a literal equals sign using the ALPHA, CALC keys;
- Activate the SOLVE function using SHIFT, CALC and you will be prompted for an initial guess, enter the guess and press normal equals;
- After a delay, the solution appears on the screen.

For our problem, the inputs are,

Key input					Screen output
$X^2 - 3 - ln(X)$	ALPHA	CALC C	SHIFT	CALC	Solve for X
1 = (our initial guess)					1.91