Solving equations numerically

James Brind
jb753@cam.ac.uk

Lent Term 2022

This note describes methods for solving equations numerically, when there is no analytical solution, that might be encountered in Examples Papers or Tripos questions. Suppose we seek a solution for x satisfying,

$$
\begin{equation*}
f(x)=x^{2}-3-\ln x=0 \tag{1}
\end{equation*}
$$

WolframAlpha The quickest approach is to type a query (clickable link) into the WolframAlpha website. This shows a nice graph of the function and gives two solutions, $x=0.0499$ or $x=1.91$. WolframAlpha is also good for checking integrals, limits, or unwieldy algebra manipulations.

Trial and improvement In Tripos exams, we only have access to a calculator. The slowest but most robust way to find a solution is trial and improvement. We guess different values of x, evaluate the function, compare to zero, and refine our guesses until we reach a desired precision,

$$
\begin{array}{lll}
f(x=1) & =-2 & \text { too small; } \\
f(x=2) & =0.307 & \text { too big, but closer; } \\
f(x=1.75) & =-0.497 & \text { too small, but closer; } \\
f(x=1.9) & =-0.032 & \text { close enough. }
\end{array}
$$

Fixed-point iteration Rearranging to make an x the subject of Eqn. (1), $x_{i+1}=\sqrt{\ln x_{i}+3}$, where we have indexed values of x over i to show that they form a sequence. We can calculate successive terms in this sequence quickly with our calculator by using the Ans variable to store x_{i} and repeatedly hitting the $=$ button. The inputs are,

Key input	Screen output
$1=$	1
$\operatorname{sqrt}(\ln ($ Ans $)+3)=$	$\sqrt{3}$
$=$	1.91
$=$	1.91

Another rearrangement of Eqn. (11), $x_{i+1}=\exp \left(x^{2}-3\right)$, finds the second root.

Calculator solve Your calculator is equipped with a solve function, which is the easiest and fastest way to tackle the problem. The steps are,

- Enter the equation using X as the unknown to solve for with ALPHA,), and a literal equals sign using the ALPHA, CALC keys;
- Activate the SOLVE function using SHIFT, CALC and you will be prompted for an initial guess, enter the guess and press normal equals;
- After a delay, the solution appears on the screen.

For our problem, the inputs are,

```
Key input
X2 - 3- ln(X) ALPHA CALC 0 SHIFT CALC
1 = (our initial guess) 1.91
```

